IIR document

Study on a waste heat-driven adsorption cooling cum desalination cycle.

Author(s) : NG K. C., THU K., SAHA B. B., et al.

Type of article: Article, IJR article

Summary

This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption–desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model is developed using isotherm characteristics of the adsorbent/adsorbate pair (silica gel and water), energy and mass balances for the each component of the cycle. The cycle is analyzed using key performance parameters namely: (i) specific cooling power (SCP); (ii) specific daily water production (SDWP); (iii) the coefficient of performance (COP); and (iv) the overall conversion ratio (OCR). The numerical results of the adsorption cycle are validated using experimental data. The parametric analysis using different hot and chilled water temperatures are reported. At 85°C hot water inlet temperature, the cycle generates 3.6 m3 of potable water and 23 Rton of cooling at the produced chilled water temperature of 10°C.

Available documents

Format PDF

Pages: 685-693

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Study on a waste heat-driven adsorption cooling cum desalination cycle.
  • Record ID : 30003554
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 35 - n. 3
  • Publication date: 2012/05

Links


See other articles in this issue (26)
See the source