• Home page
  • Publications

  • Transient simulation of finned tube type adsorb...

IIR document

Transient simulation of finned tube type adsorber employing activated carbon-ethanol as adsorbent-refrigerant pair.

Number: pap. n. 105

Author(s) : JRIBI S., MIYAZAKI T., SAHA B. B., et al.

Summary

Adsorption cooling systems are gaining more interest because of their energy savings and environment protection. Therefore, simulations of heat and mass transfers in the adsorbing/desorbing bed, main component of the system are necessary to achieve more favorable design and to improve the performance. This paper presents computational fluid dynamics (CFD) transient simulation of finned tube type adsorber/desorber bed at operating conditions of adsorption cooling system. Activated carbon powder (ACP) of type Maxsorb III was packed between the fins and ethanol was used as refrigerant. The model uses linear driving force kinetic and diffusion equation, in addition to mass, momentum and energy conservation equations. Simulation results show that temperature and pressure profiles agree fairly with experimental data at lower adsorbent thicknesses. Morover, we found that adsorption kinetics restricted the amount adsorbed to 45% of possible amount for adsorption/desorption time of 350 s. This study validated the mathematical model of the finned tube type adsorber/desorber bed and will permits, in the future, to evaluate and to enhance the performance of air-conditioning and refrigeration based adsorption systems.

Available documents

Format PDF

Pages: 8 p.

Available

  • Public price

    15 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Transient simulation of finned tube type adsorber employing activated carbon-ethanol as adsorbent-refrigerant pair.
  • Record ID : 30015267
  • Languages: English
  • Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
  • Publication date: 2015/08/16
  • DOI: http://dx.doi.org/10.18462/iir.icr.2015.0105

Links


See other articles from the proceedings (657)
See the conference proceedings