• Accueil
  • Publications

  • Experimental and 3D CFD investigation on heat t...

Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves.

Étude expérimentale et par mécanique numérique des fluides en 3D du transfert de chaleur et de la séparation d’énergie à l’intérieur d'un tube vortex à contre-courant selon le type de vannes de régulation de la chaleur utilisé.

Auteurs : RAFIEE S. E., SADEGHIAZAD M. M.

Type d'article : Article

Résumé

The thermal separation inside a vortex tube can be influenced using different shapes of throttle valves. Experimental and numerical tests are performed on the thermal characteristics of a vortex tube equipped with four types of hot valves, namely; spherical, plate, cone and truncated cone. This research focuses on a special shape of control valve which is named spherical. The effects of injection pressure, slots number, stagnation point location and level of turbulence are analyzed for a vortex tube with the spherical valve. The results show that cooling capability can reaches the maximum value by decreasing distance between the stagnation point and the control valve, as much as possible. Also, in the case of spherical, increasing the injection pressure has different effect on cooling ability compared to other valves. Furthermore, cooling capability can be assumed approximately independent of the slots number in the case of spherical, while, cooling capability depends extremely on the slots number in the case of truncated cone. A 3D-CFD model is developed to analyze the fluid treatment using the RSM turbulence model. The comparison between the computed and the laboratory outputs presents a favorable agreement with the maximum and minimum relative differences of 6.7% and 1.5%, respectively.

Détails

  • Titre original : Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves.
  • Identifiant de la fiche : 30020532
  • Langues : Anglais
  • Source : Applied thermal Engineering - vol. 110
  • Date d'édition : 05/01/2017
  • DOI : http://dx.doi.org/10.1016/j.applthermaleng.2016.08.166

Liens


Voir d'autres articles du même numéro (49)
Voir la source