WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE

Design and Operation of Walk-In Cold Rooms for Precooling and Storage of Fresh Produce in Hot Climates, in Off-Grid and Unreliable Grid Situations

DECEMBER, 2023

Cool Insights:

How Much Cooling is Enough Cooling?

Estimating Cooling Demand and Electrical Power Demand

11 June 2024

Webinar programme

- 1) The Practitioner's Technical Guide to WICR
- 2) A roadmap to successful WICR projects
- 3) Cold room plant and power sizing:
 - 1) Size and purpose of the cold room
 - 2) Quantifying cooling demand and plant sizing
 - 3) Types and sizing of the power supply
- 4) Q&A on challenges faced by designers and buyers
- 5) Related initiatives and further resources

The Practitioner's Technical Guide to WICR

Souhir Hammami, IIR

ng is Epough Choling? | 202

Main Guide; plus Overview Guide in French and English

Dor

SYNTHÈSE

CHAMBRES FROIDES :

Conception et exploitation des chambres froides pour le pré-refroidissement

et le stockage de produits frais dans les climats chauds et dans des conditions hors-réseau ou en présence d'un réseau peu fiable

GUIDE TECHNIQUE

DU PRATICIEN

WALK-IN COLD ROOMS, **A PRACTITIONER'S TECHNICAL GUIDE**

1 Operation of Walk-In Cold Room e of Fresh Produce in Hot Climat A PRACTITIONER'S le Grid Situations TECHNICAL GUIDE

WALK-IN COLD ROOMS,

Design and Operation of Walk-In Cold Rooms for Precooling

and Storage of Fresh Produce in Hot Climates, in Off-Grid

The Practitioner's Technical Guide is available free of charge here: https://iifiir.org/en/fridoc (search for 'practitioner')

Scope of WICR types covered


Preassembled

Flat-packed kits, and customised

Self-built

Size range 5 to 80m³; chilled

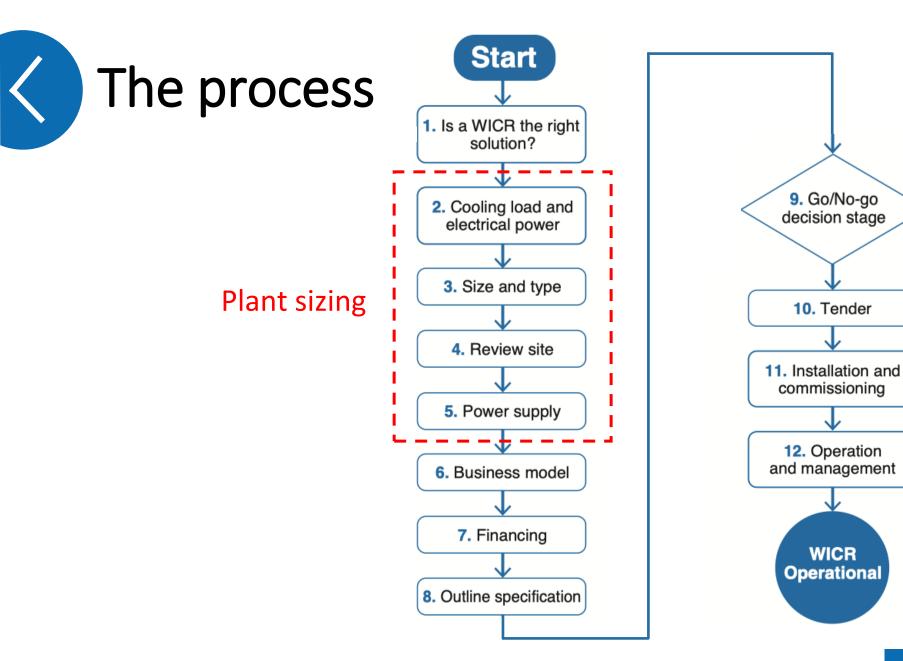
Converted containers

Today's speakers

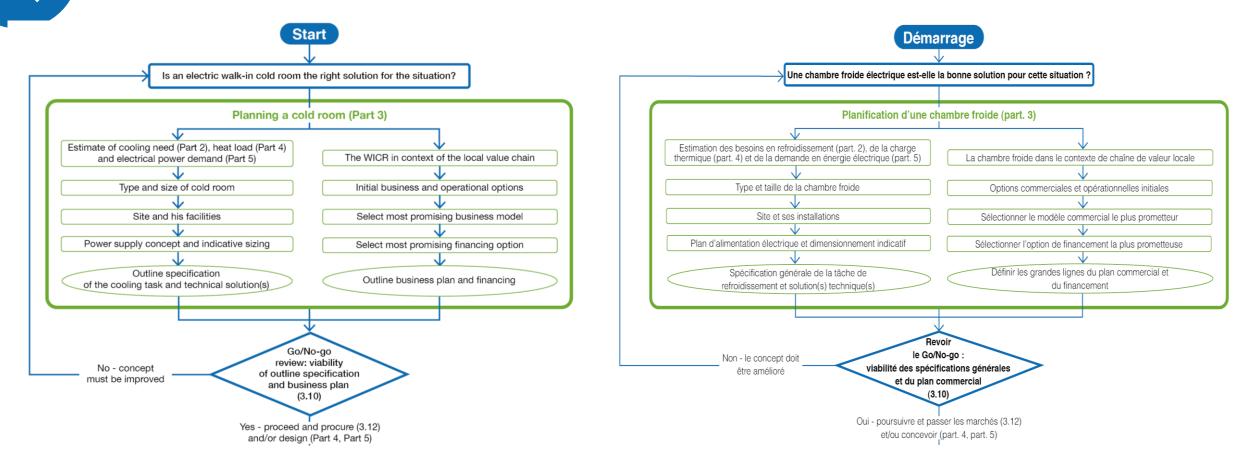
Bas Hetterscheid Manager, Partnerships Wageningen University & Research

Giovanni Cortella Professor, Thermodynamics and Refrigeration, University of Udine

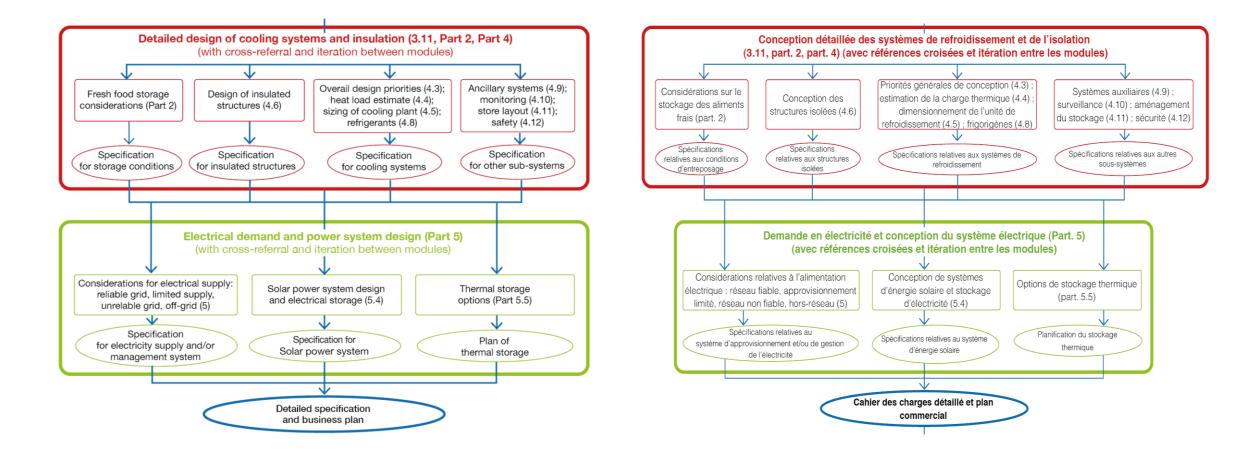
Jeremy Tait Sustainable Products Director, Tait Consulting



Victor Torres Founder, Solar Cooling Engineering

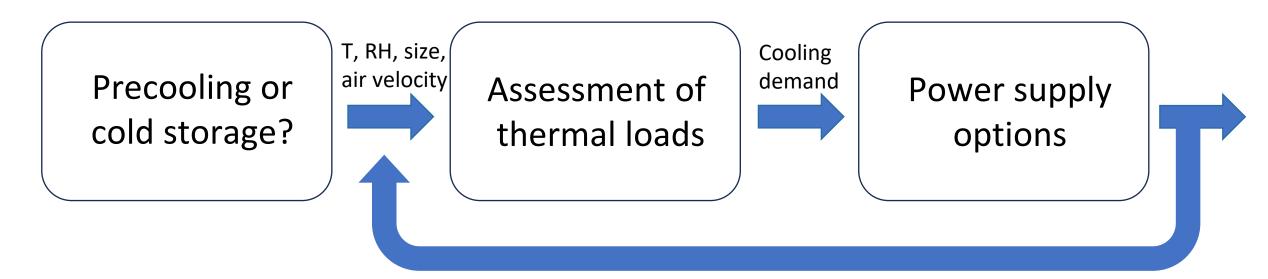

A roadmap to successful WICR projects

Giovanni Cortella, IIR



Plant sizing in the guide

Plant sizing in the guide

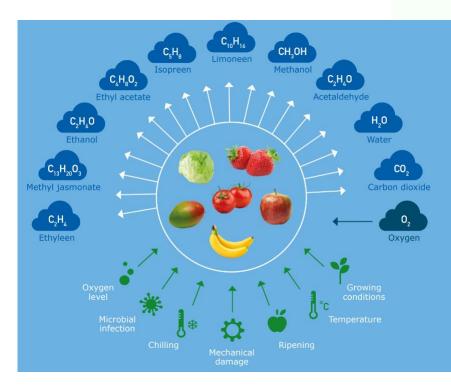


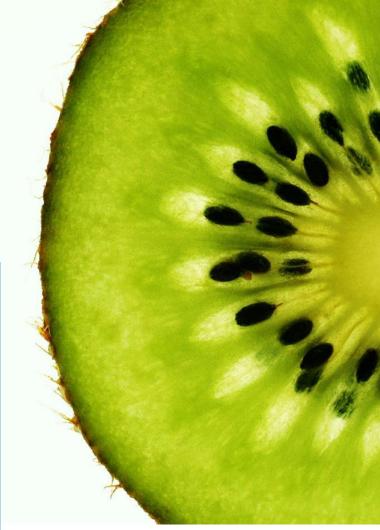
From cooling to power supply

- Effectiveness of precooling
- Timing from harvest to precooling
- Best practices

- External and internal heat loads
- Design day concept
- Technical options for precooling

- From cooling demand profile to electric power demand profile
- Power supply, energy storage


Cold room plant and power sizing: 1. Size and purpose of the cold room

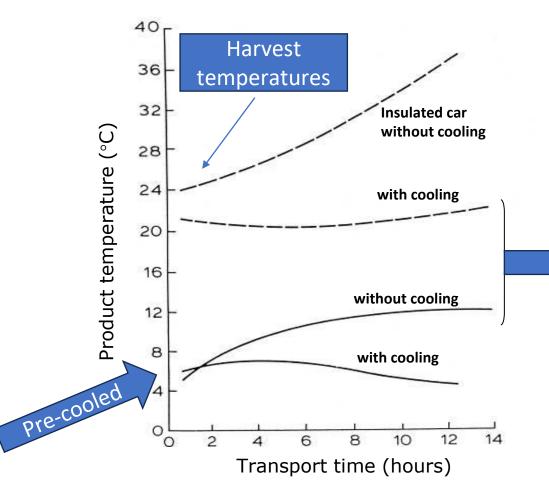

Bas Hetterscheid, Wageningen University and Research

Why is cooling so effective?

- Fresh fruits and vegetables are alive!
 - Breathing
 - Release heat
 - Dehydrates
 - Can be hurt
 - Get sick
 - Can die

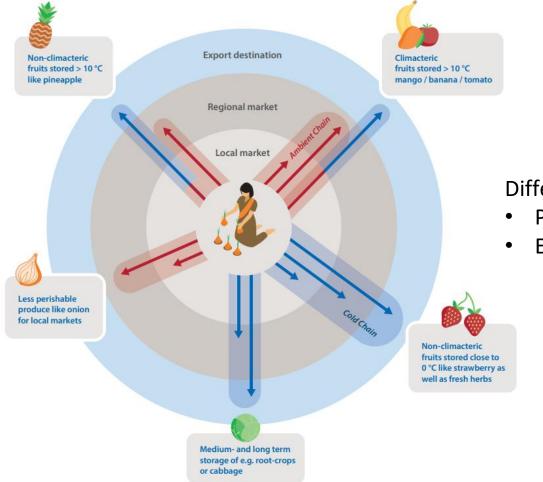
Can be influenced with temperature, RH and airspeed

Impact of temperature, RH and airspeed


Factors 뇌	If temperature is lower:	If temperature is higher:		
Respiration	decreases	increases		
RH (%)	increases	decreases		
Water loss	decreases	increases		
Microbial decay	decreases	increases		
Ethylene production	decreases	increases		
Ethylene sensitivity	decreases increases			
Chilling injury	risk increases	risk decreases		

Factors ⊔	If RH is lower:	If RH is higher:		
Water loss	increases	decreases		
Microbial decay	Il decreases increases			

Factors ⊔	If airspeed is lower:	If airspeed is higher:
Rate of cooling	decreases	increases
Water loss	decreases	increases


Source: Walk-In Cold Room, a Practitioner's Technical Guide (Section 2.3, page 26)

Pre-cooling – story of flowers

Conclusion: Better to pre-cool and transport normally, than to only transport in refrigerated truck

When is (pre-)cooling needed?

Differentiate between need from:

- Postharvest perspective
- Economic perspective (limiting factor)

Source: Wageningen (2022): Postharvest assessment methodology - https://edepot.wur.nl/582556

Delay between harvest & start of cooling

Acceptable delay (hours)	Fresh produce	Consequence of extended delays between harvest and cooling	
Vegetables			
4	broccoli	water and firmness loss, reduced shelf life	
4	spinach	water loss	
4	sweet corn	sugar loss	
4-8	leafy greens	water and crispness loss	
8	cauliflower	water loss	
8	carrot	water and crispness loss	
8	cucumber	water loss, yellowing	
8	green beans	water and crispness loss	
8	summer squash (soft skin)	water loss	
16	tomato	increased decay and rapid ripening	

Acceptable delay (hours)	Fresh produce	Consequence of extended delays between harvest and cooling		
Fruit				
2	berries water loss, decay, loss of visual quality			
8	cantaloupe melon water loss			
8	mandarin	increased rind disorders, decay		
8	watermelon	loss of sugar and texture if above 27°C		
12	avocado	premature ripening with high fruit maturity		
16	honeydew melon	loss of firmness, ripening		
16	orange	increased rind disorders, decay		
16	pomegranate	water loss		
16	persimmon water loss			
24	grapefruit	water loss, increased rind disorders, decay		

Source: Walk-In Cold Room, a Practitioner's Technical Guide (Section 2.3.1, page 28, table 2.3)

Storage life at optimal temperatures and RH

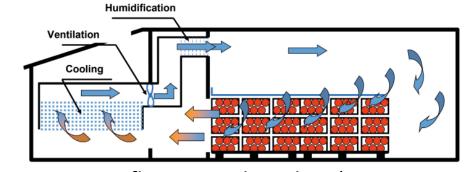
Сгор	Storage temp (°C)	RH (%)	Ethylene production	Ethylene sensitivity	Approx. storage life (weeks)
Banana	13-15	85-95	М	н	1-4
Cabbage	0	95-100	VL	Н	20-24
Carrot	0-1	95-100	VL	Н	20-24
Cassava	0-5	85-95	VL	L	4-8
Cocoyam (Xanthosoma)	7-15	80-85	VL	L	12-20
Collards	0	95- 1 00	VL	н	1-2
Courgette (zucchini), summer squash	5-10	90-95	L	М	1-2
Cucumber	10-13	85-90	L	Н	1-2
Eggplant (aubergine)	10-12	90-95	L	М	1-2
Lettuce	0	95-100	VL	н	2-3
Loquat	0-5	90-95	-	-	3
Lychee (litchi)	1-5	90-95	М	М	3-5
Mandarin	5-10	90-95	VL	М	2-4
Mango	10-13	85-90	М	М	2-3
Okra	7-10	90-95	L	М	1-2
Onions (dry bulbs)	0	65-75	VL	L	4-32
Onions (green)	0	95-98	L	н	1-4

Source: Walk-In Cold Room, a Practitioner's Technical Guide (Section 2.3.1, page 29, table 2.4)

Pre-conditions & considerations

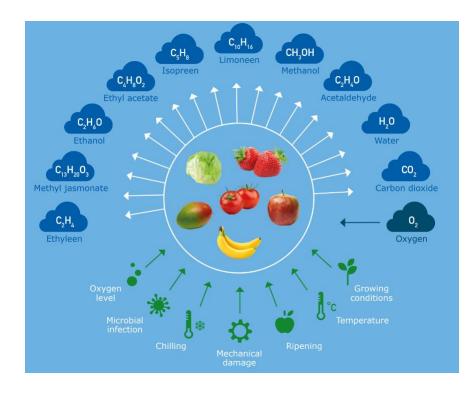
- Early morning harvest (lower temperature)
- Pre-cooling in separate room
- Ensure air can flow around product (prevent overfilling)
- After pre-cooling, move directly into cold room (preventing water loss due to rapid airflow)

Source: Walk-In Cold Room, a Practitioner's Technical Guide (Section 2.3.2, page 31)

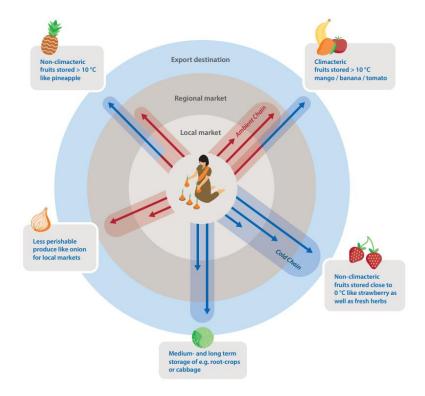

Pre-conditions and best practices

Early morning harvest (lower temperatures)

Pre-cooling in separate room Keep cooled and to be cooled product apart



Ensure air can flow around product (prevent overfilling)


Source: Walk-In Cold Room, a Practitioner's Technical Guide (Section 2.3.2, page 31)

1: Product are alive; treat them as they like (Handling, temperature, RH)

2: Value of pre-cooling (Postharvest vs economical)

Cold room plant and power sizing: 2. Quantifying cooling demand and plant sizing

Jeremy Tait, Tait Consulting GmbH, and IIR

ough ooling? | 2024

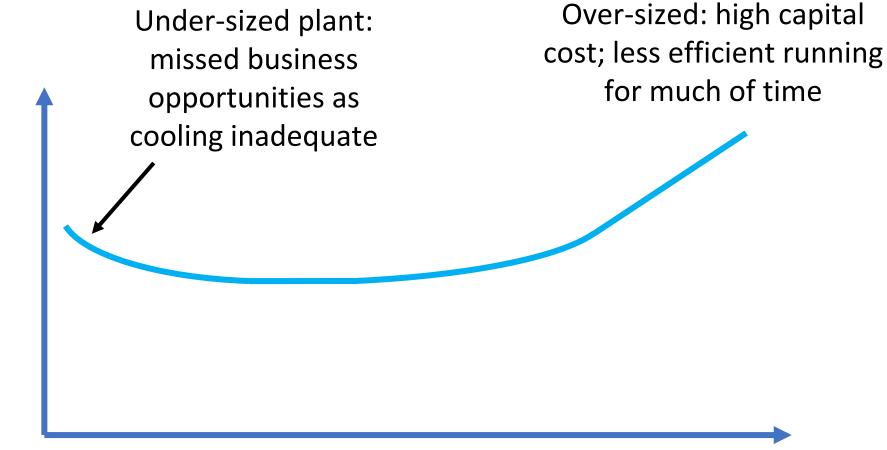
The 'Design Day': a representative cooling demand level, chosen from the demand profile

Cooling demand varies with:

- Volume and temperature of produce loaded (including precooling?)
- Ambient temperature by day, week and time of year
- Thickness & type of insulation, other design features
- How well operation of store is managed
- Number of door openings
- Storage set point temperature
- Type of produce
- Future plans (expansion, higher utilisation)
- And more

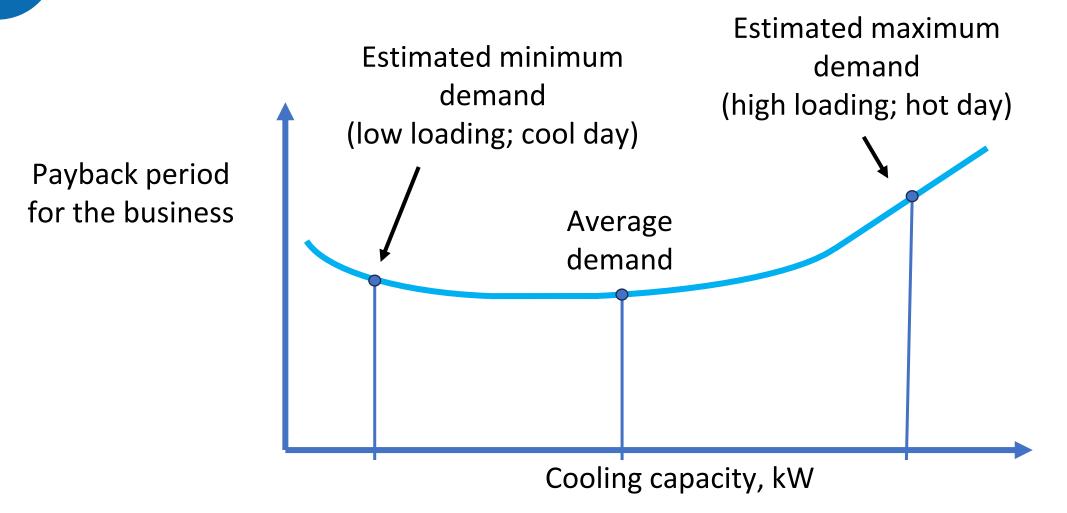
The 'Design Day': a representative cooling demand level, chosen from the demand profile

Cooling demand varies with:

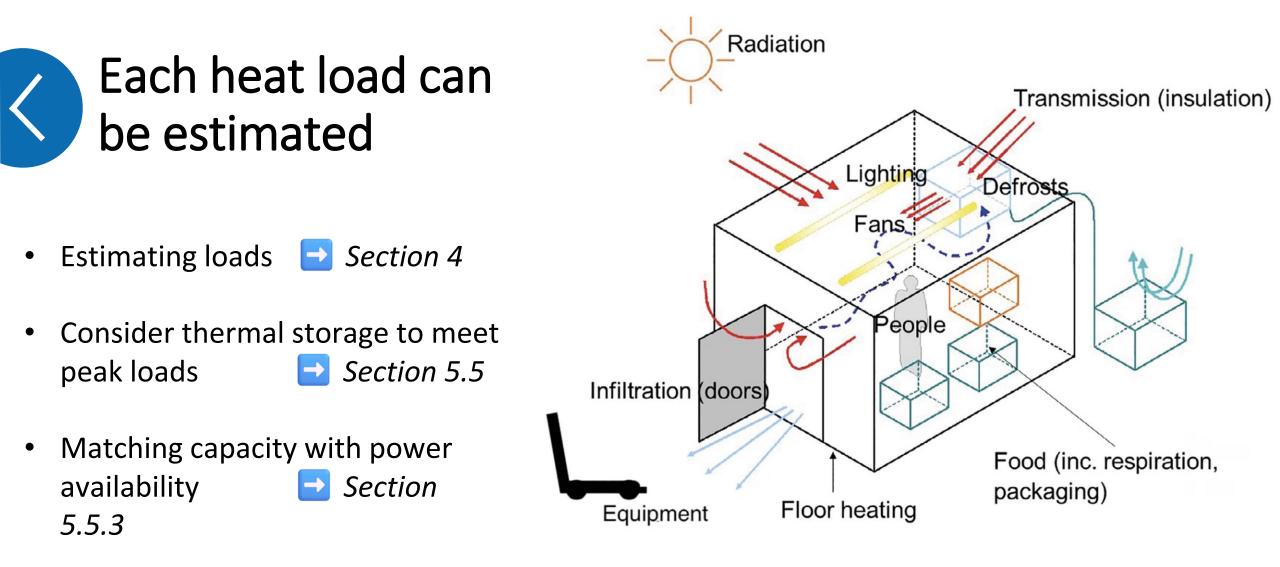

- Volume and temperature of produce loaded (including precooling?)
- Ambient temperature by day, week and time of year
- Thickness & type of insulation, other design features
- How well operation of store is managed
- Number of door openings
- Storage set point temperature
- Type of produce
- Future plans (expansion, higher utilisation)
- And more

- The 'design day' demand is indicative for plant sizing
- A compromise between capacity and cost
- Somewhere between demand of a Typical Day and a Peak Day
- Should take advantage of thermal storage

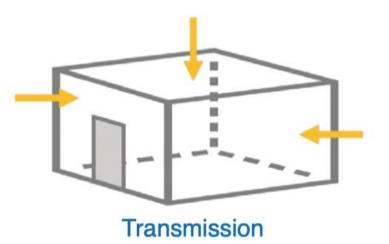
Main Guide **Sections** 4.4, 4.3.5


Sizing of plant – risk and cost

Payback period for the business


Cooling capacity, kW

Sizing of plant – risk and cost


Sizing of plant – risk and cost

Chosen 'Design Day' loading (compromise of cost vs. capacity - your choice!) Payback period for the business Cooling capacity, kW

Suggestion: start simple

- Calculate the heat through the insulation on a typical day. Compare it with the cooling capacity of the refrigeration plant.
- What capacity is left for all other demands?

4.14.3 Heat through the insulation (transmission)

The shape of the cold room can generally be assumed to be a rectangular box. The heat load through the cold room walls is calculated using (2). Since this includes the solar gain temperature (T_s), this calculation must be made separately for any surfaces that are in direct sun (see Subsection 4.15.3 Solar gain):

$$Q_w = U \cdot A_w \cdot \left(T_0 - T_i + T_s\right) \tag{2}$$

The overall heat transfer coefficient, U is calculated using (3).

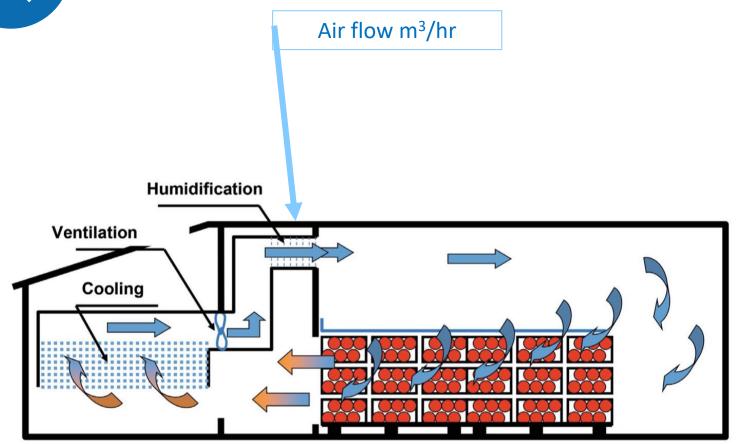
$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o} + \frac{\Delta_w}{k_w}$$
(3)

Most chilled cold rooms will have wall panels at least 100 mm thick. Some typical values for thermal conductivity are presented below. Calculation of transmission across cold room walls provides an

Main Guide 🔁 Section 4.14.3

Some benchmarks for cooling capacity

Table 4.1


Approximate refrigeration capacity for small scale cold rooms. Source: Thompson J.F. and Spinoglio M., 1996.

Size of cold room (m ²)	Storage capacity (MT)	Range of refrigeration capacity (kW)		
		Target = 1°C	Target = 13 °C	
10	3	3.5	2.6	
20	6	5.3-8.8	3.5-5.3	
40	12	12.3-14.1	7.0-10.6	
60	18	17.6-22.9	10.6-14.1	
80	24	22.9-29.9	14.1-19.4	
100	30	26.4-35.2	15.8-24.6	

Lower number is for moderate climates; Higher number is for hot climates (lowland tropics, semi-arid regions).

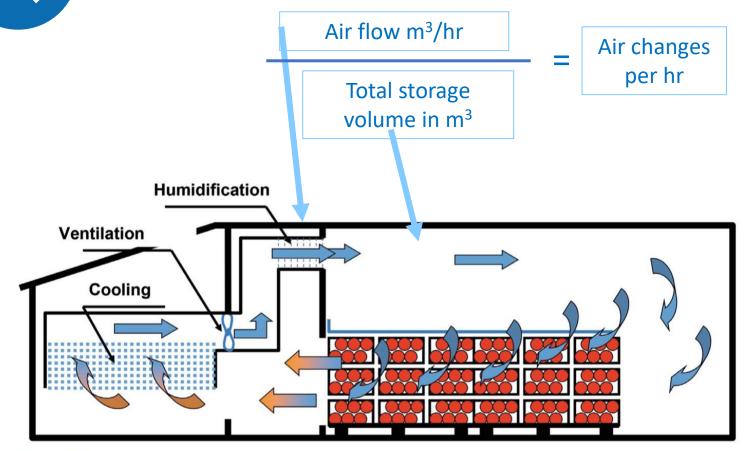

Effective cooling needs cold and air flow

Figure 2.5

Example configuration for precooling of produce, with forced air circulation drawn through the racked produce and in which air is cooled using thermal storage (source: *Solar Cooling Engineering and Josef Streif*).

Effective cooling needs cold and air flow

Figure 2.5

Example configuration for precooling of produce, with forced air circulation drawn through the racked produce and in which air is cooled using thermal storage (source: *Solar Cooling Engineering and Josef Streif*).

Benchmarks for air flow:

Number of times per hour the air in the chamber is drawn through the evaporator / thermal store by the fans

EU best practice suggests:

- For storage, 50 x per hour
- For pre-cooling: 120 x per hour

(Benchmarks are needed for Global South and off-grid systems! – Ongoing work)

Main Guide Sections 4.3.4, 4.11.2, 4.11.3, 7.7.5, 2.3.7

Convert cooling demand to an electrical demand

- Electrical demand of monobloc cooling unit quoted in brochure
- Electrical demand of custom assembled systems can be added from components (compressor; condensing unit; evaporator fans; defrost; controllers etc)

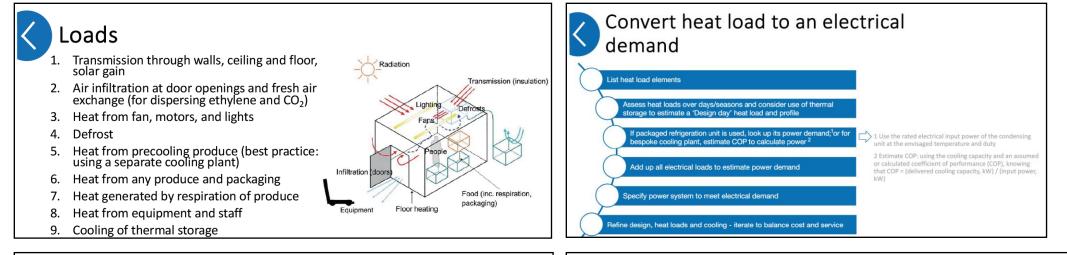
Convert cooling demand to an electrical demand

- Electrical demand of monobloc cooling unit quoted in brochure
- Electrical demand of custom assembled systems can be added from components (compressor; condensing unit; evaporator fans; defrost; controllers etc)

Main Guide 🔁 Section 4.14.3

Add other loads:

- -Heaters (door seal, other)
- Other controls and loggers


– Lights

- Battery charging
- Other demands for equipment and staff
- -> Estimate the Design Day electrical demand profile for the electrical system sizing

Cold room plant and power sizing: 3. Types and sizing of the power supply

Victor Torres, Solar Cooling Engineering GmbH

Review of sizing process

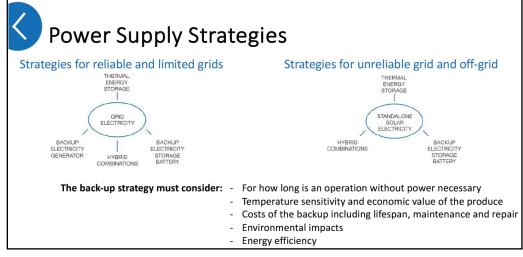
Types of Power Supply

Reliable grid:

electrical grid connection with sufficient quality of voltage and frequency and continuity of supply ≥ 22 hours power per day

Limited supply:

electrical supply of reasonable or good quality but operating hours of <22 hours per day


Unreliable grid:

electrical grid is available, but power is subject to highly variable quality and reliability often without prior notice of problems
some form of electrical or thermal storage is essential

Off-grid supply:

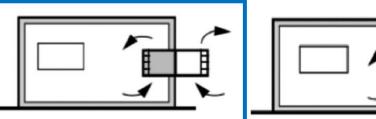
- no electricity grid connection is available at the site \rightarrow standalone generation system is therefore required

Example design of a WICR

Table 5.6

Example of sizing of components for a 20 ft container cold room, off-grid with energy storage.

- 20 feet container size
- 100 mm PU insulation
- 2 °C WICR Temperature
- 35°C Ambient max.




Source: WeTu, Kenya

1 5 1		
	Chilled storage	
Room temperature	2	°C
Outdoor temperature	35	°C
Refrigerating unit running time	24	h/day
Solar energy availability time (on PV time)	8	h/day
Autonomy (off-grid hours)	16	h
Length x Width x Height	2.30 x 6.00 x 2.30	m
Room walls surface area	51.98	m ²
Room floor surface area	13.8	m²
Insulation material	Polyurethane	
Thickness	100	mm
Floor insulation	0	mm
U-value insulation panel	0.21	W/m ² K
Cooler fans	70 - 12	W - h/day
Illumination	25 - 3	W - h/day
Products	Vegetables	
Heat loads		
Transmission losses	581	W
Ventilation losses	464	W
Other heat sources	915	W
Respiration	24	W
Total Heat loads	1984	W

Heat load of pre-cooling (kg/day) needs to be added depending on the user-case!

Cooling System and Power Supply

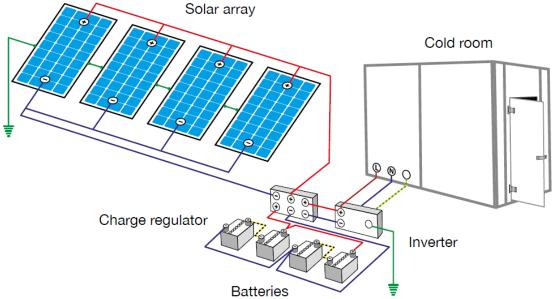
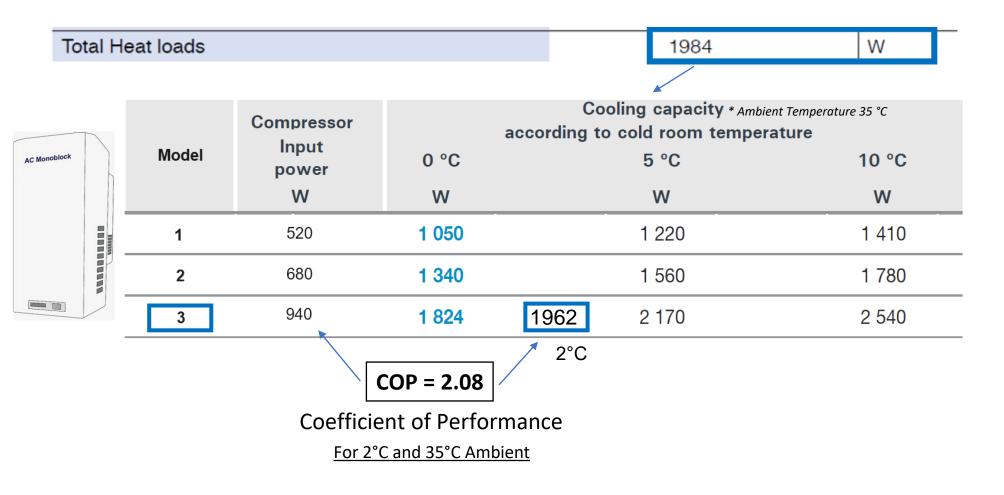


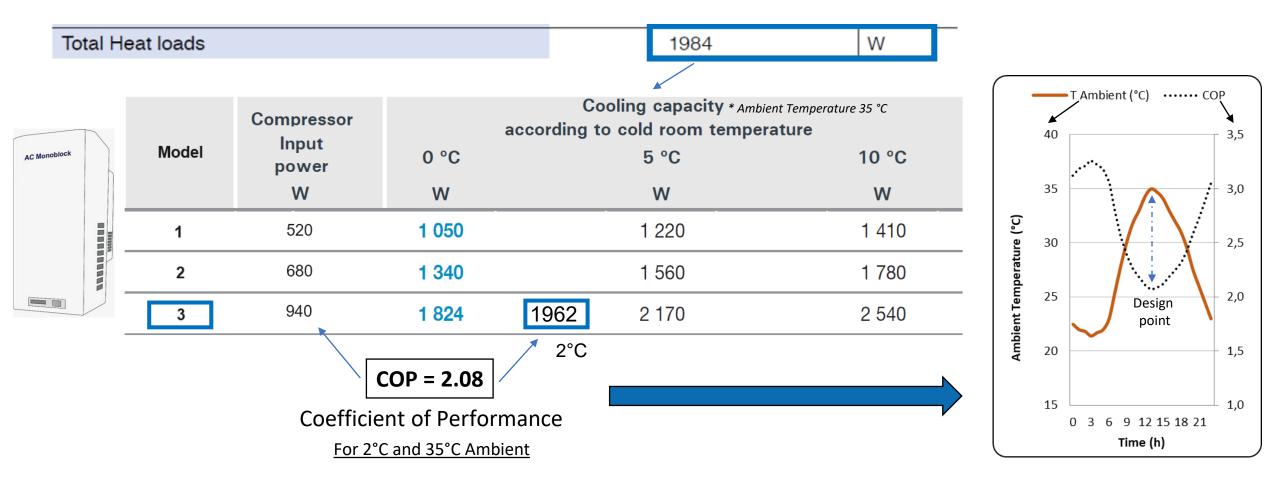
Figure 4.2

Through the wall packaged unit or monobloc (left) and split type unit (right).

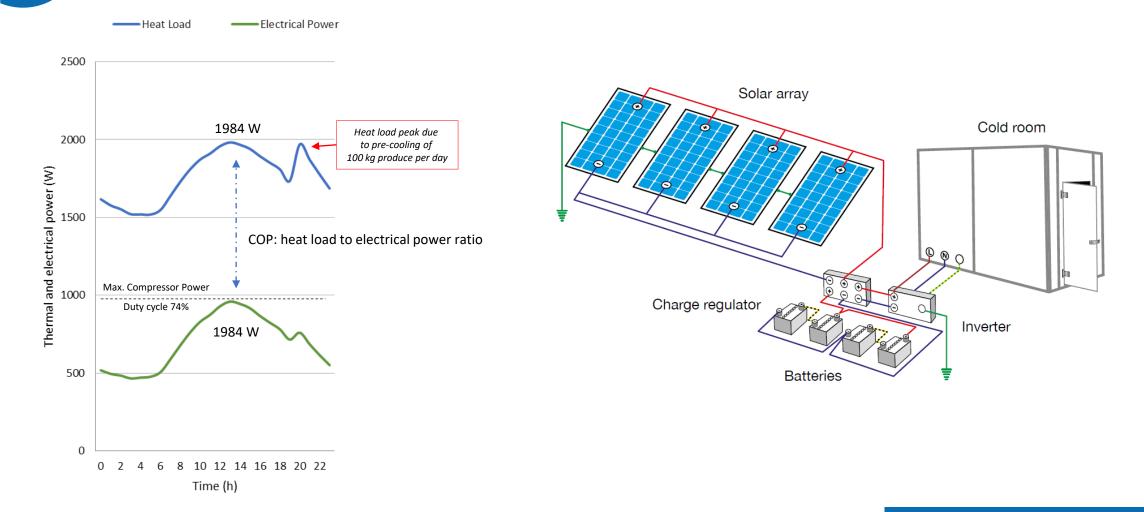
Figure 5.8

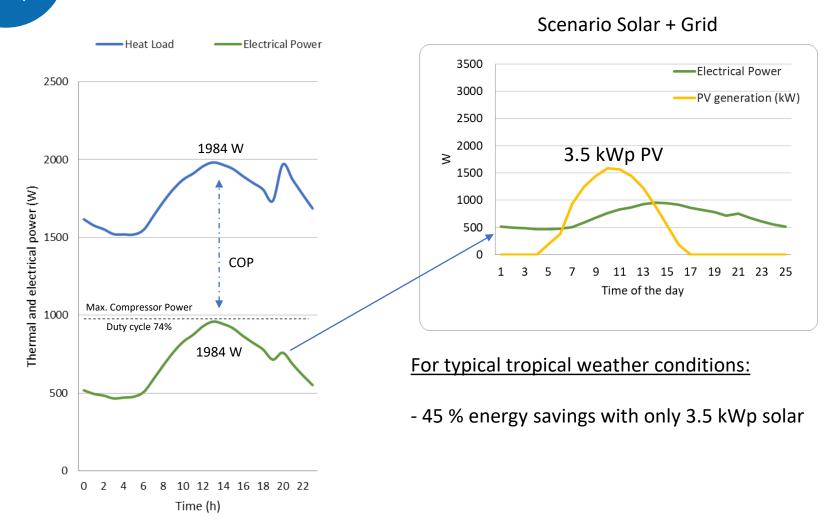

Key components of a battery-based PV system for AC loads.

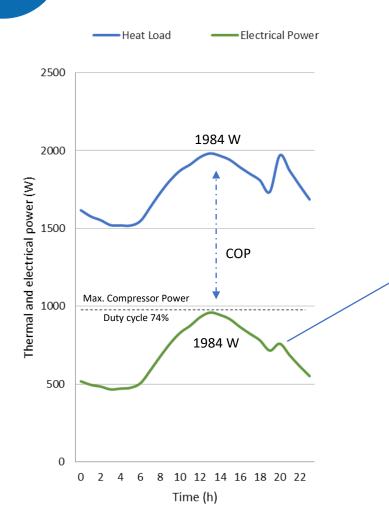
- Which monobloc do we need?
- What size solar system is right for us?
- Is electrical or thermal storage cost efficient?

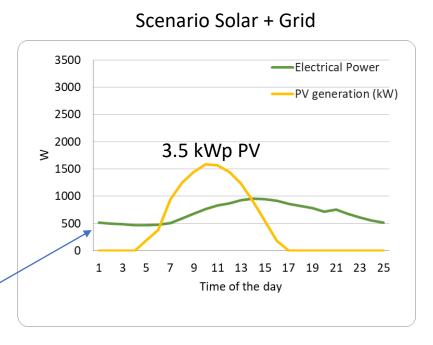

Cooling Demand and Energy Consumption

at loads			1984	W
onoblock Model	Compressor	Cooling capacity * Ambient Temperature 35 °C according to cold room temperature		
	power	0 °C	5 °C	10 °C
	W	W	W	W
1	520	1 050	1 220	1 410
2	680	1 340	1 560	1 780
3	940	1 824	2 170	2 540
	Model 1 2	ModelCompressor Input power15202680	ModelCompressor Input poweracc 0°CWW152026801 340	ModelCompressor Input powerCooling capacity * Ambie according to cold room temper 5 °CModel0 °C5 °CWWW15201 0501 22026801 3401 560


Cooling Demand and Energy Consumption

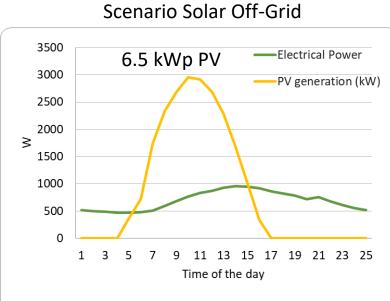

Cooling Demand and Energy Consumption

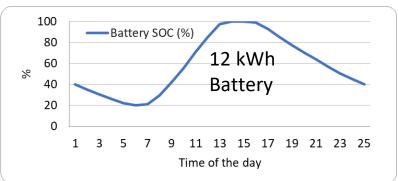

Daily energy consumption



Daily energy consumption

Daily energy consumption





For typical tropical weather conditions:

- 45 % energy savings with only 3.5 kWp solar

- 100 % energy savings with 6.5 kWp solar and 12 kWh usefull battery capacity

- The Coefficient Of Performance (COP) gives us the relation between heat load and energy consumption. Valid for a given ambient and cold room temperature!
- Up to 50% of the energy consumption can be covered directly by solar without batteries (Ideal for reliable grids)
- Electrical batteries can be used for unreliable grids (more cost efficient than gensets)
- Thermal storage can not only substitute electrical batteries but serve as a buffer of thermal energy for high cooling power scenarios. The decision is taken with help of a cost–benefit analysis.

Q&A on challenges faced by designers and buyers

Monique Baha, IIR

Related initiatives and further resources

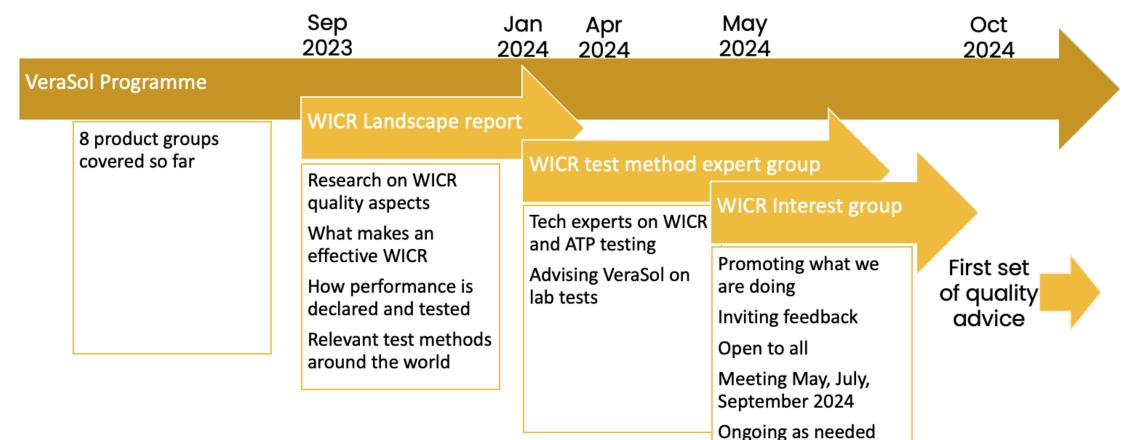
Jeremy Tait, Tait Consulting GmbH, and IIR

A quality framework for WICR by VeraSol

Aims:

- To help programmes, buyers and suppliers to assess the suitability of walk in cold rooms for perishable food storage in the Global South, covering grid-connected, off-grid and hybrid power situations.
- To encourage the market to develop more suitable and affordable WICR.

https://verasol.org



A quality framework for WICR by VeraSol

Timeline and process

GOGLA sales data – new market research on WICR from July 2024

- GOGLA aggregates and reports sales trends and impacts
- Data helps attract investment
- Aggregated data is published (company data remains confidential)
- -GOGLA plans to cover WICR
- Online surveys start July 2024
- Please consider submitting your sales data

Details from:

- Serra Paixao <u>s.paixao@gogla.org</u>
- -<u>https://www.gogla.org/reports/</u> global-off-grid-solar-marketreport/

Some further resources

- Small-Scale Postharvest Handling Practices: A Manual for Horticultural Crops (5th Edition, 2015). University of California, Davis. Available from: <u>https://postharvest.ucdavis.edu/publication/smallscale-postharvest-handling-practices-manualhorticultural-crops-5th-edition</u>
- Manual for the preparation and sale of fruits and vegetables, from field to market, Food and Agriculture Organization of the United Nations, Rome, 2004. Accessible as an online book at <u>https://www.fao.org/3/y4893e/y4893e00.htm#Contents</u>
- Energy Efficiency in Cold Rooms, Design Application manual DA12, Australian Institute of Refrigeration, Air Conditioning and Heating, May 2020. Available from: <u>https://airah.org.au/site/iCore/Store/StoreLayouts/It</u> <u>em_Detail.aspx?iProductCode=DA12</u> (fee applies)

- Precooling systems for small-scale producers, Lisa Kitinoja and James F Thompson, Stewart Postharvest Review v. 6, n. 2 (01 June 2010) : 1-14, ISSN_17459656. Accessed 16.8.2023 at <u>https://access.portico.org/stable?au=phx64r6d413</u>
- A Practical Guide to Solar Photovoltaic Systems for Technicians, Sizing, Installation and Maintenance, Jean-Paul Louineau, 2020. Available from: <u>https://practicalactionpublishing.com/book/2482/apractical-guide-to-solarphotovoltaic-systems-fortechnicians</u>
- Postharvest Assessment Methodology: conceptual framework for a methodology to assess food systems and value chains in the postharvest handling of perishables as a basis for effective interventions, 2022. Report 2359 / Wageningen Food & Biobased Research. Available from: https://doi.org/10.18174/582556

https://doi.org/10.18174/582556

WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE

Design and Operation of Walk-In Cold Rooms for Precooling and Storage of Fresh Produce in Hot Climates, in Off-Grid and Unreliable Grid Situations

DECEMBER, 2023

Thank you!

Download your copy IIFIIR.ORG EFFICIENCYFORACCESS.ORG

