Amélioration du transfert de chaleur en utilisant l'optimisation assistée par approximation pour les échangeurs de chaleur à plaques capitonnées.

Heat transfer enhancement using approximation assisted optimization for pillow plate heat exchangers.

Numéro : pap. 2641

Auteurs : ELDEEB R., LING J., AUTE V., et al.


Optimization is a powerful mathematical methodology that can be employed to miniaturize and improve the performance of plate heat exchangers in order to achieve higher compactness and energy efficiency. Achieving these goals means less material used, and less charge, and thus a lower impact on the environment. Plate heat exchangers (PHXs) are favored by the HVAC&R industry since they are compact, and they have desirable thermal-hydraulic characteristics due to their small approach temperature. However, the challenge with plate heat exchangers lies with the cost of new designs. Pillow plate heat exchanger (PPHX) is a promising type of PHXs which also possesses desirable thermal-hydraulic characteristics due to their complex 3D wavy structure which creates a fully developed turbulent flow enhancing heat transfer. Furthermore, PPHXs are manufactured in a simpler more economical way compared to conventional PHXs. In this study, novel PPHXs designs are investigated in order to maximize the thermal-hydraulic performance. The PPHX pillow surface is created using CFD simulations ensuring structural stability while resembling the manufacturing process. The computational domain is then obtained from the deformed surface, meshed, and simulated. The whole CFD simulation process with its different components is automated using a Python script. The optimization problem has four design variables which are the spot weld ratio, the spot weld diameter, the pillow height, and the inlet velocity. The objective is to maximize the heat transfer coefficient and minimize the pressure drop per unit length. The potential enhancement is found to be up to 3 times improvement in heat transfer coefficient and up to 98% reduction in pressure drop as compared to a selected PPHX baseline design. Sensitivity analysis is conducted on the optimal designs to provide insights into factors affecting their performance. The sensitivity study shows that the spot weld diameter is a significant parameter where further improvements can be applied.

Documents disponibles

Format PDF

Pages : 10


  • Prix public

    20 €

  • Prix membre*

    15 €

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)


  • Titre original : Heat transfer enhancement using approximation assisted optimization for pillow plate heat exchangers.
  • Identifiant de la fiche : 30024698
  • Langues : Anglais
  • Source : 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Date d'édition : 09/07/2018


Voir d'autres communications du même compte rendu (252)
Voir le compte rendu de la conférence