Document IIF

Approche du système d’inférence neuro-floue pour prédire le débit massique du frigorigène R-134a/GPL pour les tubes capillaires adiabatiques droits et hélicoïdaux dans un système frigorifique à compression de vapeur.

Adaptive neuro-fuzzy inference system approach to predict the mass flow rate of R-134a/ LPG refrigerant for straight and helical coiled adiabatic capillary tubes in the vapor compression refrigeration system.

Auteurs : GILL J., SINGH J.

Type d'article : Article, Article de la RIF

Résumé

This study deals with predicting the mass flow rate of R-134a/LPG as refrigerant inside a straight and helical coiled adiabatic capillary tube of vapor compression refrigeration system by combining dimensionless analysis and Adaptive Neuro-Fuzzy Inference System techniques. For this purpose the experimental system was designed and tested under steady state conditions, by changing the length of the capillary tube, the inner diameter of the capillary tube, the coil diameter and the degree of subcooling of the refrigerant at the capillary tube inlet. Dimensional analysis was utilized to provide generalized dimensionless parameters and to reduce the number of input parameters, while Adaptive Neuro-Fuzzy Inference System was applied as a generalized approximator of the nonlinear multi-input and single-output function. The comparison of the absolute fraction of variance (R2) (0.998 and 0.961), the root mean square error (RMSE) (0.105 kg/h and 0.489 kg/h) and the mean absolute percentage error (MAPE) (0.954% and 4.75%) demonstrated the result for combination of dimensional analysis and Adaptive Neuro-Fuzzy Inference System and dimensionless correlation model predictions respectively. The results indicated that the combination of dimensional analysis and Adaptive Neuro- Fuzzy Inference System gave the best statistical prediction efficiency.

Documents disponibles

Format PDF

Pages : 166-175

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Adaptive neuro-fuzzy inference system approach to predict the mass flow rate of R-134a/ LPG refrigerant for straight and helical coiled adiabatic capillary tubes in the vapor compression refrigeration system.
  • Identifiant de la fiche : 30021573
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 78
  • Date d'édition : 06/2017
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2017.02.004

Liens


Voir d'autres articles du même numéro (15)
Voir la source