Document IIF

Conception d'un échangeur de chaleur à ailettes annulaires à lit à sorption pour l'optimisation d'une pompe à chaleur à adsorption.

Annular-finned sorption bed heat exchanger design for adsorption heat pump optimization.


Adsorbent temperature control is critical in adsorption heat pumps. During both adsorption and desorption, the thermal conductance of the sorption bed should be large to yield the greatest possible change in equilibrium uptake, thus maximizing refrigerant throughput and cooling duty. While thermal control is critical, the transient nature of adsorption heat pumps complicates sorption bed design. In steady thermal systems like absorption heat pumps, extended surfaces may be used liberally to intensify heat transfer, notwithstanding increased mass and cost. Adsorption heat pumps are subject to the same cost and mass constraints, but because the sorption bed is thermally cycled, any extended surfaces will detrimentally affect the coefficient of performance as energy stored in the inert heat exchanger during desorption will be discarded during the subsequent pre-cooling and adsorption stages. The annular finned geometry, which appears frequently in commercial and research adsorption heat pumps, is analyzed in this work. A thermodynamic model of a non-recuperative heat pump is developed and the effects of fin height, fin pitch and other parameters on the coefficient of performance are investigated Both silica gel-water and activated carbon fiber (ACF)-ethanol working pairs are investigated, and it is found that the heat exchanger geometry that yields a desirable balance of thermal conductance and COP is significantly different for these two working pairs as a result of their different densities, wall contact resistances and effective conductivities.

Documents disponibles

Format PDF

Pages : 453-465


  • Prix public

    20 €

  • Prix membre*


* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)


  • Titre original : Annular-finned sorption bed heat exchanger design for adsorption heat pump optimization.
  • Identifiant de la fiche : 30001233
  • Langues : Anglais
  • Source : Sources/sinks Alternative to the Outside Air for Heat Pump and Air-conditioning Techniques (Alternative Sources - AS), Padua, Italy, April 5-7, 2011. / International Sorption Heat Pump Conference (ISHPC11), Padua, Italy, April 6-8, 2011.
  • Date d'édition : 06/04/2011


Voir d'autres communications du même compte rendu (122)
Voir le compte rendu de la conférence