Effet de la géométrie d'une tuyère à jet sur les performances d'écoulement et de transfert de chaleur d'un refroidissement par vortex pour la partie avant d'une aube de turbine à gaz.
Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge.
Résumé
In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-? model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by carefully designing and optimizing the vortex chamber geometry.
Détails
- Titre original : Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge.
- Identifiant de la fiche : 30017069
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 93
- Date d'édition : 25/01/2016
- DOI : http://dx.doi.org/10.1016/j.applthermaleng.2015.09.087
Liens
Voir d'autres articles du même numéro (72)
Voir la source
Indexation
-
CFD simulation of vortex flashing flows in conv...
- Auteurs : ZHU J., ELBEL S.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Heat transfer enhancement of an impinging synth...
- Auteurs : LIU Y. H., CHANG T. H., WANG C. C.
- Date : 05/02/2016
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 94
Voir la fiche
-
Heat transfer enhancement in a novel internally...
- Auteurs : ZHENG N., LIU P., SHAN F., et al.
- Date : 25/02/2016
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 95
Voir la fiche
-
Measurement of static pressure profiles of vort...
- Auteurs : ZHU J., ELBEL S.
- Date : 12/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 108
- Formats : PDF
Voir la fiche
-
A two-zone thermal model for predicting the eff...
- Auteurs : KAWAJI M., STAMATIOU E., FOURNAISON L., et al.
- Date : 21/08/2007
- Langues : Anglais
- Source : ICR 2007. Refrigeration Creates the Future. Proceedings of the 22nd IIR International Congress of Refrigeration.
- Formats : PDF
Voir la fiche