Document IIF
Étude de l'efficacité de détection de défaut d'un capteur de refroidisseur basée sur la description de données vectorielles de support.
Study on the support vector data description (SVDD)-based chiller sensor fault detection efficiencies.
Résumé
In refrigeration and air conditioning system, sensors play important roles in recording the performance data and monitoring the operative modes. Sensor faults especially the sensor outputs biases, may have severe effects on the energy consumption and operation cost of the system caused by incorrect estimation of the operating state, inappropriate action of controlling component. These errors or biases should be detected in time to avoid further damage. According to the pattern recognition theory, the task of fault detection can be considered as a one-class classification problem. A one-class classifier, Support Vector Data Description (SVDD) algorithm has advantages on describing the nonlinear data that violate the Gaussian distribution. And it was employed for detecting sensor faults in the screw chiller system in this study. Chiller practical operating data was used to validate the method. The fault detection efficiencies were analyzed with different artificially introduced levels of sensor biases. The grid search and the 10-fold cross validation method was adopted to search for an optimal pair of (C, g) parameters in the SVDD model so as to obtain good generalization performance and avoid overfitting problems. Results show that the SVDD-based method perform well in detecting chiller sensor faults, even for low temperature sensor faults with absolute magnitude around 1°C. And this can be conducive to early fault detection and reduce the loss.
Documents disponibles
Format PDF
Pages : 11 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Study on the support vector data description (SVDD)-based chiller sensor fault detection efficiencies.
- Identifiant de la fiche : 30016133
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Date d'édition : 16/08/2015
- DOI : http://dx.doi.org/10.18462/iir.icr.2015.0294
Liens
Voir d'autres communications du même compte rendu (657)
Voir le compte rendu de la conférence
Indexation
-
A semi-supervised data-driven approach for chil...
- Auteurs : FENG Z., WANG L., MA X., JIANG Z., CHANG B.
- Date : 05/04/2023
- Langues : Anglais
- Source : 3rd IIR conference on HFO Refrigerants and low GWP Blends. Shanghai, China.
- Formats : PDF
Voir la fiche
-
Integration of dynamic model and classification...
- Auteurs : AGUILERA J. J., MEESENBURG W., SCHULTE A., OMMEN T., MARKUSSEN W. B., ZÜHLSDORF B., POULSEN J. L., FÖRSTERLING S., ELMEGAARD B.
- Date : 13/06/2022
- Langues : Anglais
- Source : 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2022). Proceedings. Trondheim, Norway, June 13-15th 2022.
- Formats : PDF
Voir la fiche
-
Speed-controlled compact screw compressors with...
- Auteurs : REICHLE M., PFAFFL J.
- Date : 20/07/2017
- Langues : Anglais
- Source : 8th international conference on compressors and refrigeration, 2017.
- Formats : PDF
Voir la fiche
-
CHARACTERISTICS OF ICE AND FROST FORMATION ON T...
- Auteurs : MARINJUK B. T.
- Date : 24/09/1990
- Langues : Anglais
- Formats : PDF
Voir la fiche
-
Optimal environmental performance of water-cool...
- Auteurs : YU F. W., CHAN K. T.
- Date : 07/06/2010
- Langues : Anglais
- Source : ACRA2010. Asian conference on refrigeration and air conditioning: Tokyo, Japan, June 7-9, 2010.
- Formats : PDF
Voir la fiche