Résumé
With the absence of structure parameters of chillers, it is difficult to simulate the chiller performance by the conventional precise modeling approach. Thus, a novel modeling approach is proposed, which makes unknown structure parameters lumped and obtains them (i.e. the characteristic parameters, which are unique for each chiller) based on measured data of chillers. The modeling principle of feature recognition is described, based on which then the chiller models were developed. An experimental platform of chiller was established, and the relevant chiller models were established on basis of measured data. Moreover, to verify the chiller models, simulations and experiments were compared under variable water flow rate and variable water temperature conditions respectively. Results show that with the feature recognition method, the chiller models can function quickly and efficiently, and achieve a high accuracy. Compared with experimental results, relative errors of simulated performance parameters, such as refrigerating capacity and COP (coefficient of performance), are all within 10%. This study provides a new and efficient approach for chiller modeling.
Documents disponibles
Format PDF
Pages : 326-334
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Study on the feature-recognition-based modeling approach of chillers.
- Identifiant de la fiche : 30025640
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 100
- Date d'édition : 04/2019
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.02.010
Liens
Voir d'autres articles du même numéro (46)
Voir la source
-
Influence of the dry cooler capacity on the eff...
- Auteurs : RAUSER H. C., FILIPPINI S.
- Date : 03/2013
- Langues : Anglais
- Source : REHVA Journal
Voir la fiche
-
Possibilities of adapting a free-cooling system...
- Auteurs : RABCZAK S., NOWAK K.
- Date : 05/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 9
- Formats : PDF
Voir la fiche
-
Optimal chiller loading by improved parallel pa...
- Auteurs : GAO Z., YU J., HU Q., YANG S.
- Date : 04/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 136
- Formats : PDF
Voir la fiche
-
Refrigeration machine modeling for exergy-based...
- Auteurs : BRENNER L., TILLENKAMP F., GHIAUS C.
- Date : 11/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Formats : PDF
Voir la fiche
-
Development of ultra-high-efficiency medium-cap...
- Auteurs : ZHANG Z., QIU H., LI D., HE Z., XING Z., WU L.
- Date : 12/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 24
- Formats : PDF
Voir la fiche