Document IIF
Etude théorique d'un compresseur rotatif à spirale sans huile innovant intégré dans un cycle de pompe à chaleur à absorption hybride.
Theoretical study of a novel oil-free co-rotating scroll compressor integrated into a hybrid absorption heat pump cycle.
Numéro : pap. 1032
Auteurs : MENDOZA L. C., BERDASCO M., CORONAS A., et al.
Résumé
Hybrid absorption heat pumps (Osenbrück cycle and Hybrid wet compression cycle) are known for high temperature lifts, low-pressure ratios and wide capacity control. They are well suited for processes with the occurrence of significant heat sink and heat source temperature glides. Environmentally friendly working fluids such as ammonia/water mixtures offer advantages for system performance and play an important role for the future of heat pump applications. However, the main challenges of these cycles are the requirement of oil-free compressors suitable for high temperature lifts that may cope with two phase flows. In this paper a theoretical integration of a novel oil-free co-rotating scroll compressor into a Hybrid absorption heat pump (for cooling and heating) is presented. This compressor has been experimentally characterized and modeled with air and varying rates of water ingestion; the main advantages are that it can operate in both dry and wet conditions without additional internal lubrication. Also, the absence of lubricant allows the oil-free compressor to be used in refrigeration heat pumps. Maximum COP values of 3.3 and 4.3 are determined for cooling and heating mode, respectively. The cycle operates in cooling mode with sink water temperatures of 45°C/70°C and chilled water temperatures of 20°C/6°C, while in heating mode with chilled water of 80°C/40°C and heating production from 80°C to 175°C. Maximum temperature lifts of 56K for cooling mode and 110K for heating mode are determined.
Documents disponibles
Format PDF
Pages : 8 p.
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Theoretical study of a novel oil-free co-rotating scroll compressor integrated into a hybrid absorption heat pump cycle.
- Identifiant de la fiche : 30019091
- Langues : Anglais
- Source : 12th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2016). Proceedings. Édimbourg, United Kingdom, August 21st-24th 2016.
- Date d'édition : 21/08/2016
- DOI : http://dx.doi.org/10.18462/iir.gl.2016.1032
Liens
Voir d'autres communications du même compte rendu (140)
Voir le compte rendu de la conférence
Indexation
-
Comparison of zeotropic working fluid mixtures ...
- Auteurs : ZÜHLSDORF B., JENSEN J. K., REINHOLDT L. O., et al.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
Modelling approach for a liquid-injected ammoni...
- Auteurs : AHRENS M., TONSBERG E., TOLSTOREBROV I., HAFNER A., EIKEVIK T.
- Date : 13/01/2021
- Langues : Anglais
- Source : 10th IIR Conference on Compressors and Refrigerants.
- Formats : PDF
Voir la fiche
-
Two-stage high temperature hybrid heat pump wit...
- Auteurs : ELLINGSEN O. M., KVALSVIK K. H., BANTLE M.
- Date : 18/06/2018
- Langues : Anglais
- Source : 13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings. Valencia, Spain, June 18-20th 2018.
- Formats : PDF
Voir la fiche
-
Performance modelling of an ammonia-water absor...
- Auteurs : REN S., AHRENS M. U., HAMID K., TOLSTOREBROV I., HAFNER A., EIKEVIK T., WIDELL K. N.
- Date : 27/04/2023
- Langues : Anglais
- Source : 10th IIR Conference on Ammonia and CO2 Refrigeration Technologies.
- Formats : PDF
Voir la fiche
-
Compressors for ammonia-water hybrid absorption...
- Auteurs : AHRENS M. U., HAFNER A., EIKEVIK T. M.
- Date : 11/04/2019
- Langues : Anglais
- Source : 8th Conference on Ammonia and CO2 Refrigeration Technology. Proceedings: Ohrid, North Macedonia, Avril 11-13, 2019.
- Formats : PDF
Voir la fiche