Document IIF

Méthode améliorée de détection des défauts pour les refroidisseurs centrifuges basée sur l'estimation de la densité du noyau et sur l'analyse de ses composantes entropiques.

An enhanced fault detection method for centrifugal chillers using kernel density estimation based kernel entropy component analysis.

Auteurs : XIA Y., DING Q., JING N., TANG Y., JIANG A., SHU J.

Type d'article : Article de la RIF

Résumé

In building automation system, timely detecting the operational faults in water chillers is crucial to system operation management. As a linear data transformation technique, the performance of principal component analysis (PCA) based chiller fault detection method is limited, especially for the incipient ones, due to the nonlinearities in chillers. In addition, the control limit for the monitoring statistic, such as squared prediction error (SPE), is determined under the Gaussian assumption of the score variables, which can hardly be satisfied in water chillers. Therefore, an enhanced fault detection method with the application of kernel density estimation (KDE) and kernel entropy component analysis (KECA) algorithm is reported in this paper. Cauchy-Schwarz (CS) divergence was evaluated as monitoring statistic to measure the cosine of the angle between two data sets after being projected onto a dominated subspace, and then adopted as an index for dissimilarity. KDE with its bandwidth being optimized was also applied to estimate the distribution of the CS divergence, so that the control limit for fault monitoring could be determined. The proposed KDE based KECA-CS method was validated using the experimental data from ASHRAE RP-1043, and further compared to the PCA -SPE, kernel principal component analysis (KPCA)-SPE, and KECA-SPE methods. Results showed that the best performance could be realized when using the KDE based KECA-CS method. The reported fault detection ratio was over 68% for the seven typical chiller faults even at their corresponding least severity level. The average fault detection accuracy was over 90%.

Documents disponibles

Format PDF

Pages : 290-300

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : An enhanced fault detection method for centrifugal chillers using kernel density estimation based kernel entropy component analysis.
  • Identifiant de la fiche : 30028719
  • Langues : Anglais
  • Sujet : Technologie
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 129
  • Date d'édition : 09/2021
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2021.04.019
  • Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.

Liens


Voir d'autres articles du même numéro (32)
Voir la source