Modélisation d’unités de traitement d’air afin de créer un ensemble diversifié de données sur les défaillances en vue de l’innovation en matière de détection de défaut et de diagnostic : enseignements tirés et recommandations.
Modeling air handling units to create a diverse fault dataset for FDD innovation: lessons learned and recommendations.
Numéro : 3478
Auteurs : CASILLAS A., CHEN Y., LIN G., GRANDERSON J., HUANG S.
Résumé
As energy management and information systems (e.g., automated fault detection and diagnostics [AFDD] tools) become more prevalent in the commercial building stock, it is important to determine the effectiveness of these technologies by benchmarking their performance. The authors have been working to develop the largest publicly available dataset of HVAC fault datasets for performance benchmarking applications, covering the most common HVAC systems and designs including chiller plants, rooftop packaged units, dual duct air handling unit and single duct air handling units. This study covers the development, modeling, and validation of a synthetic fault dataset for the air handling unit (AHU), one of the most common HVAC configurations found in the commercial building stock. Despite this being a common system, real-world time series data are scarce and usually do not span a wide range of weather conditions. Due to this limitation, two detailed AHU models, which included the single duct AHU and dual duct AHU developed in the Modelica language and HVACSIM+ were employed to carry out annual simulations of numerous common sensor faults, mechanical faults, and control sequence faults. The fault inclusive data were then validated by comparing fault effects on system performance to expected symptoms. We summarize the nature of each fault and their impacts under different weather and operation conditions. We report some lessons learnt during the efforts of validating the high volumes of the FDD data sets. Finally, we highlight considerations for FDD developers that may want to use this dataset to assess their algorithms’ performance and their improvement over time.
Documents disponibles
Format PDF
Pages : 10 p.
Disponible
Gratuit
Détails
- Titre original : Modeling air handling units to create a diverse fault dataset for FDD innovation: lessons learned and recommendations.
- Identifiant de la fiche : 30030240
- Langues : Anglais
- Source : 2022 Purdue Conferences. 7th International High Performance Buildings Conference at Purdue.
- Date d'édition : 2022
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres communications du même compte rendu (39)
Voir le compte rendu de la conférence
Indexation
-
Bayesian networks for whole building level faul...
- Auteurs : CHEN Y., WEN J., CHEN T., et al.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Defining zero energy buildings.
- Auteurs : PETERSON K. W., TORCELLINI P.
- Date : 2016
- Langues : Anglais
- Source : High Performing Buildings - vol. 9 - n. 1
Voir la fiche
-
Effect of solar radiation model on the predicte...
- Auteurs : PRADA A., PERNIGOTTO G., BAGGIO P., et al.
- Date : 14/07/2014
- Langues : Anglais
- Source : 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Poredenje modela poslovnog objekta sa energetsk...
- Auteurs : KRSTIC-FURUNDZIC A., KOSIC T.
- Date : 03/12/2014
- Langues : Anglais
- Source : Zbornik radova. 45. Medunarodnikongres i izložba o grejanju hladenju i klimatizaciji./ Proceedings. 45th International congress and exhibition on heating, refrigeration and air conditioning (HVAC&R).
- Formats : PDF
Voir la fiche
-
Building Thermal-Network Models: A Comparative ...
- Auteurs : BOODI A., BEDDIAR K., AMIRAT Y., BENBOUZID M.
- Date : 02/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 4
- Formats : PDF
Voir la fiche