Performance antigivre d’une surface superhydrophobique avec nanotiges d’oxyde de zinc.

Anti-frosting performance of superhydrophobic surface with ZnO nanorods.

Auteurs : ZUO Z., LIAO R., ZHAO X., et al.

Type d'article : Article

Résumé

A superhydrophobic (SHP) surface is believed to be potential candidates for anti-icing/frosting applications. In this study, a SHP surface with ZnO nanorods was fabricated through radio frequency (RF) magneton sputtering method. The XRD pattern, surface morphology, wettability and chemical composition were characterized by corresponding methods. The anti-frosting property and mechanism of frost propagation on surfaces exhibiting various degrees of wettability were investigated on a Peltier-based platform. Compared with the bare glass surface and a permanent-room-temperature-vulcanized silicon rubber-coated glass surface, the as-prepared SHP ZnO surface displays excellent anti-frosting property. Frost formation on the as-prepared SHP ZnO surface was delayed for 140 min at -10 °C. A large gap free of condensed water droplets formed on the as-prepared SHP ZnO surface because of the self-propelled movement and absorption of condensed water droplets by the frost front. As a consequence, the frost propagation rate is effectively reduced. Moreover, after 30 cycles of frosting/defrosting process, no evident degradation of the as-prepared SHP ZnO surfaces was observed, indicating fair durability against repetitive frosting/defrosting process. Our study provides insights into the mechanism of anti-frosting property of nanostructured SHP surfaces and proposes a potential method to fabricate an anti-frosting surface.A superhydrophobic (SHP) surface is believed to be potential candidates for anti-icing/frosting applications. In this study, a SHP surface with ZnO nanorods was fabricated through radio frequency (RF) magneton sputtering method. The XRD pattern, surface morphology, wettability and chemical composition were characterized by corresponding methods. The anti-frosting property and mechanism of frost propagation on surfaces exhibiting various degrees of wettability were investigated on a Peltier-based platform. Compared with the bare glass surface and a permanent-room-temperature-vulcanized silicon rubber-coated glass surface, the as-prepared SHP ZnO surface displays excellent anti-frosting property. Frost formation on the as-prepared SHP ZnO surface was delayed for 140 min at -10 °C. A large gap free of condensed water droplets formed on the as-prepared SHP ZnO surface because of the self-propelled movement and absorption of condensed water droplets by the frost front. As a consequence, the frost propagation rate is effectively reduced. Moreover, after 30 cycles of frosting/defrosting process, no evident degradation of the as-prepared SHP ZnO surfaces was observed, indicating fair durability against repetitive frosting/defrosting process. Our study provides insights into the mechanism of anti-frosting property of nanostructured SHP surfaces and proposes a potential method to fabricate an anti-frosting surface.

Détails

  • Titre original : Anti-frosting performance of superhydrophobic surface with ZnO nanorods.
  • Identifiant de la fiche : 30020318
  • Langues : Anglais
  • Source : Applied Thermal Engineering - vol. 110
  • Date d'édition : 05/01/2017
  • DOI : http://dx.doi.org/10.1016/j.applthermaleng.2016.08.145

Liens


Voir d'autres articles du même numéro (49)
Voir la source