Document IIF

Régression de Kernel pour estimer de façon approximative les coefficients de transfert de chaleur.

Kernel regression for the approximation of heat transfer coefficients.

Numéro : pap. 1025

Auteurs : LAUGHMAN C. R., QIAO H., NIKOVSKI D. N.

Résumé

Experimentally-based correlations and other parametric methods for approximating heat transfer coefficients, while popular, have a number of shortcomings that are manifest when they are used in dynamic simulations of thermofluid systems. This paper studies the application of a nonparametric statistical learning technique, known as kernel regression, to the problem of approximating heat transfer coefficients for single-phase and boiling flows for the use in dynamic simulation. This method is demonstrated to accurately predict heat transfer coefficents for subcooled, two-phase, and superheated flows for a finite volume model of a refrigerant pipe, as compared to results obtained from established correlations drawn from the literature.

Documents disponibles

Format PDF

Pages : 8 p.

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Kernel regression for the approximation of heat transfer coefficients.
  • Identifiant de la fiche : 30019053
  • Langues : Anglais
  • Source : 12th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2016). Proceedings. Édimbourg, United Kingdom, August 21st-24th 2016.
  • Date d'édition : 21/08/2016
  • DOI : http://dx.doi.org/10.18462/iir.gl.2016.1025

Liens


Voir d'autres communications du même compte rendu (140)
Voir le compte rendu de la conférence