Résumé
Vortex control is a novel two-phase convergent-divergent nozzle restrictiveness control mechanism. The flow control is achieved by adjustable nozzle inlet vortex strength. The underlying mechanism behind vortex control is still unclear. In this study, 3D CFD simulations of vortex flashing R134a flows in convergent-divergent nozzles have been conducted. Good agreement was found between the simulation and experimental results. When there is no vortex applied, the void fraction at the nozzle center remains low. When the vortex is applied, vapor bubbles are driven towards the nozzle center. The applied vortex significantly increases the interphase mass transfer near the nozzle outlet with more uniform interfacial area per unit volume and better utilization of liquid superheats at the nozzle center for evaporation. Thus, after the introduction of inlet vortex, more vapor is generated in the divergent part of the nozzle. As a result, the pressure drop across the divergent part of the nozzle is increased. There is negligible vapor content upstream of the throat even though the pressure is already below saturation pressure. When the inlet vortex is applied, with elevated pressure at the nozzle throat and constant inlet conditions, the pressure difference across the nozzle convergent part decreases and therefore the nozzle mass flow rate is reduced. The overall nozzle outflow mass flow averaged axial velocity can be increased by 30.1%, nozzle isentropic efficiency increases from 37.7% to 63.8% and nozzle mass flow rate drops from 16.0 g s−1 to 12.6 g s−1 when inlet vortex is introduced.
Documents disponibles
Format PDF
Pages : 56-68
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : CFD simulation of vortex flashing R134a flow expanded through convergent-divergent nozzles.
- Identifiant de la fiche : 30027383
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 112
- Date d'édition : 04/2020
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.12.005
Liens
Voir d'autres articles du même numéro (30)
Voir la source
Indexation
-
Thèmes :
HFC;
Transfert de masse - Mots-clés : R134a; HFC; Écoulement diphasique; Débit; Régulation; CFD; Vortex; Chute de pression; Vapeur; Modélisation
-
Pressure drop studies on two-phase flow in a un...
- Auteurs : VIJAYARANGAN B. R., JAYANTI S., BALAKRISHNAN A. R.
- Date : 05/2007
- Langues : Anglais
- Source : International Journal of Heat and Mass Transfer - vol. 50 - n. 9-10
Voir la fiche
-
Technical note: an empirical correlation for tw...
- Auteurs : CHEN I. Y., YANG K. S., WANG C. C.
- Date : 08/2002
- Langues : Anglais
- Source : International Journal of Heat and Mass Transfer - vol. 45 - n. 17
Voir la fiche
-
Two-phase flow in high-heat-flux micro-channel ...
- Auteurs : LEE J., MUDAWAR I.
- Date : 02/2005
- Langues : Anglais
- Source : International Journal of Heat and Mass Transfer - vol. 48 - n. 5
Voir la fiche
-
Pressure drop data and prediction method for en...
- Auteurs : ROOYEN E. van, THOME J. R.
- Date : 09/2013
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 6
- Formats : PDF
Voir la fiche
-
Flow characteristics and control of vertical up...
- Auteurs : VOUTSINAS A., SHAKOUCHI T., TAKAMURA J., et al.
- Date : 11/2006
- Langues : Anglais
- Source : JSME int. J., B - vol. 49 - n. 4
Voir la fiche