Document IIF
Analyse numérique et prédiction par réseau neuronal artificiel de la chute de pression des fluides frigorigènes en écoulement diphasique dans une jonction en T.
Numerical analysis and artificial neural network-based prediction of two-phase flow pressure drop of refrigerants in T-junction.
Résumé
The two-phase flow behaviors in T-junction are quite complex in energy transport systems. In this paper, the two-phase flow pressure drop of refrigerants in a horizontal branching T-junction was analyzed numerically and predicted using artificial neural network. Firstly, the distribution of static and total pressure was obtained based on Eulerian method, and the parametric studies on the local pressure drop were conducted. It is observed that the vortexes in the entrance of branch pipe lead to the pressure fluctuation and irreversible pressure losses, and the “descend-ascend” of static and total pressure happens under high mass flow split ratio in run pipe. Then, the ANN predicting model of local pressure drop coefficients was established. It shows that GA-BPNN and PSO-BPNN has the best predicting ability for K12J and K13J respectively, and the relative errors are within 10% for most cases. Finally, the sensitivity analysis was conducted, indicating that the effect of mass flow split ratio (F) and inlet quality (x1) is the most significant for K12J and K13J respectively.
Documents disponibles
Format PDF
Pages : 34-42
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Numerical analysis and artificial neural network-based prediction of two-phase flow pressure drop of refrigerants in T-junction.
- Identifiant de la fiche : 30029486
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 137
- Date d'édition : 05/2022
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2022.02.005
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres articles du même numéro (23)
Voir la source
Indexation
-
Prediction of pressure drop during evaporation ...
- Auteurs : GARCIA J. J., GARCÍA F., BERMUDEZ J., et al.
- Date : 01/2018
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 85
- Formats : PDF
Voir la fiche
-
Modified neural network correlation of refriger...
- Auteurs : YANG L., ZHANG C. L.
- Date : 09/2009
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 32 - n. 6
- Formats : PDF
Voir la fiche
-
Unified artificial neural network-group contrib...
- Auteurs : DEVOTTA S., CHELANI A.
- Date : 08/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 140
- Formats : PDF
Voir la fiche
-
Thermodynamic properties of refrigerants using ...
- Auteurs : MORA J. E., PEREZ C., GONZALEZ F. F., et al.
- Date : 10/2014
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 46
- Formats : PDF
Voir la fiche
-
Prediction of two-phase flow distribution in mi...
- Auteurs : GIANNETTI N., REDO M. A., SHOLAHUDIN S., JEONG J., YAMAGUCHI S., SAITO K., KIM H.
- Date : 03/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Formats : PDF
Voir la fiche