Apprentissage machine appliqué aux compresseurs volumétriques et cartographie de la performance des détendeurs.
Machine learning applied to positive displacement compressors and expanders performance mapping.
Numéro : pap. 1170
Auteurs : ZIVIANI D., BAHMAN A. M., JAMES N. A., et al.
Résumé
Positive displacement compressors are critical components in today’s vapor compression refrigeration, air conditioning, and heat pumping applications and can also be applied as expanders in power generation systems, such as organic Rankine cycles (ORC). The simulation of such systems is essential to predict and optimize the performance behavior at full- and part-load conditions. To this end, comprehensive system models are built by including different submodels corresponding to each cycle component (e.g., heat exchangers, compressor, linesets). In general, the higher the complexity of each sub-models utilized to capture the physics, the higher the computational time required to solve a simulation run. In this work, deep learning is utilized to obtain high-accuracy performance predictions of positive displacement machines. A fixed-speed two-phase injected and vapor injected scroll compressor for air-conditioning applications and an oil-free scroll expander for low-grade waste heat recovery by means of an ORC are considered as test cases. In particular, Artificial Neural Network (ANN)-based models have been developed for each of the machines and trained using experimental data collected at the Ray W. Herrick Laboratories. The results of the training and testing of the models are presented as well as a discussion of the reliability of such models for extrapolating performance. In addition, the ANN models are compared with conventional empirical and semi-empirical modeling approaches. The models have been implemented in the Python programming language by using the open-source Keras package.
Documents disponibles
Format PDF
Pages : 10
Disponible
Prix public
20 €
Prix membre*
15 €
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Machine learning applied to positive displacement compressors and expanders performance mapping.
- Identifiant de la fiche : 30024237
- Langues : Anglais
- Source : 2018 Purdue Conferences. 24th International Compressor Engineering Conference at Purdue.
- Date d'édition : 09/07/2018
Liens
Voir d'autres communications du même compte rendu (130)
Voir le compte rendu de la conférence
Indexation
-
Unsteady numerical simulation of scroll expande...
- Auteurs : PENG B., LI Y., ZHAO S.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 24th International Compressor Engineering Conference at Purdue.
- Formats : PDF
Voir la fiche
-
A Recent Advance on Partial Evaporating Organic...
- Auteurs : LHERMET G., TAUVERON N., CANEY N., BLONDEL Q., MORIN F. A.
- Date : 10/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 20
- Formats : PDF
Voir la fiche
-
Recent research of advanced scroll compressors ...
- Auteurs : KURTULUS O., GROLL E. A.
- Date : 02/09/2013
- Langues : Anglais
- Source : Compressors 2013: 8th International Conference on Compressors and Coolants.
- Formats : PDF
Voir la fiche
-
Experimental investigation of a scroll unit use...
- Auteurs : DUMONT O., QUOILIN S., LEMORT V.
- Date : 14/07/2014
- Langues : Anglais
- Source : 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Design of a two-phase reciprocating expansion t...
- Auteurs : VAN HEULE X., VIEREN E., PAEPE M. de, LECOMPTE S.
- Date : 15/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 26th International Compressor Engineering Conference at Purdue.
- Formats : PDF
Voir la fiche