Recommandé par l'IIF
Apprentissage par renforcement pour les systèmes de gestion des bâtiments.
Reinforcement learning for building management systems.
Numéro : 3711
Auteurs : DELGOSHAEI P., PERTZBORN A., HEIDARINEJAD M.
Résumé
It is increasingly common to design buildings with advanced sensing and control systems to improve energy efficiency, indoor air quality which impacts health and productivity. However, there has been limited progress in making building automation systems “intelligent,” as the performance of such buildings is often limited by reactive control systems, primarily using setpoint limits and fixed operation schedules. The complex nature of building control problems motivates the application of state-of-the-art software engineering methods and techniques. Agent-based models (ABM) are well-suited for controlling complex engineering systems such as those employed in building heating, ventilation, and air-conditioning (HVAC) systems. In this paradigm, a collection of interacting autonomous components (i.e., agents) adapt and make decisions in changing environments. There is a growing body of literature on adaptive agents in ABMs in many industries, but few have looked at the compatibility of ABMs with artificial intelligence (AI) optimization approaches. In most cases, conventional optimization techniques, such as mixed integer linear programming and gradient descent, have been used to find an optimal solution. This paper explores the use of an actor-critic, model-free algorithm based on a deterministic policy gradient that provides continuous control to generate the desired supply air temperature. The case study develops a thermal energy storage (TES) agent that determines the optimal valve position to manage the temperature of the cooling water flow. The case study was developed using the Intelligent Building Agents Laboratory at the National Institute of Standards and Technology. Future work will use multiple agents (i.e., air handling unit, TES, chiller) acting in cooperation or competition.
Documents disponibles
Format PDF
Pages : 8
Disponible
Prix public
20 €
Prix membre*
15 €
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Reinforcement learning for building management systems.
- Identifiant de la fiche : 30028671
- Langues : Anglais
- Sujet : Technologie
- Source : 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Date d'édition : 24/05/2021
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres communications du même compte rendu (52)
Voir le compte rendu de la conférence
Indexation
-
Dedicated to efficiency. 2016 ASHRAE Technology...
- Auteurs : LEMIRE N., FREDERICKS R. O., BARIL P. L., et al.
- Date : 10/2016
- Langues : Anglais
- Source : EcoLibrium - vol. 15 - n. 9
- Formats : PDF
Voir la fiche
-
A case study of economic optimization of HVAC s...
- Auteurs : PATEL N. R., RISBECK M. J., RAWLINGS J. B., et al.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Energy analysis of a 3D printed building and en...
- Auteurs : REVERTE V., MASIP X., PRADES-GIL C., BARCELÓ RUESCAS F.
- Date : 11/11/2020
- Langues : Anglais
- Source : X Congreso Ibérico y VIII Congreso Iberoamericano de Ciencias y Técnicas del Frío, CYTEF 2020.
- Formats : PDF
Voir la fiche
-
A heuristic model predictive control method to ...
- Auteurs : MOROVAT N., ATHIENITIS A. K., CANDANEDO J. A.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 7th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Naturally air-conditioned nearly zero-energy ho...
- Auteurs : PATIDAR Y., BOKEL R.
- Date : 12/2021
- Langues : Anglais
- Source : REHVA Journal - vol. 58 - n. 6
- Formats : PDF
Voir la fiche