Document IIF

Déploiement de modèles prédictifs de la charge de refroidissement à court et moyen termes pour l’exploration de données en vue de l’optimisation et de la gestion énergétiques des bâtiments.

Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management.

Auteurs : TANVEER A., CHEN H., JANN S., et al.

Type d'article : Article, Article de la RIF

Résumé

In this study, data-mining techniques comprising three forecasting algorithms for accurate and precise cooling load requirement prediction in the building environment, with the primary aim and the objective of improving the load management are applied. Three state-of-the-art cooling load prediction algorithms are – multiple-linear regression (MLR) model, Gaussian process regression (GPR) model and Levenberg–Marquardt backpropagation neural network (LMB-NN) model. The Pearson correlation analysis is practiced calculating the correlation between actual cooling load demand and input feature variables of climate parameters. The impact of climate variability on the building load requirement is also analyzed. Forecasting intervals are divided into two basic parts: (i) 7-day ahead prediction; and (ii) 1-month ahead prediction. To assess the prediction performance, four performance evaluation indices are applied, which are: (i) coefficient of correlation (R); (ii) mean absolute error (MAE); (iii) mean absolute percentage error (MAPE); and (iv) coefficient of variation (CV). The model's performance is compared with the selection of different hidden neurons at different load conditions. The MAPE for 7-day ahead prediction interval by MLR, GPR and LMB-NN model is 13.053%, 0.405% and 2.592%, respectively. Furthermore, the data-mining algorithms are compared and validated with the previous study, and the MAPE of Bayesian regularization neural networks is calculated 2.515% for 7-day ahead prediction. It was witnessed that the algorithms could be applied to facilitate the building cooling load prediction, by applying a relatively limited number of parameters related to energy usage as well as environmental impact in the building environment. The forecasting results show that the three algorithms are effective in predicting the irregular behavior in the data as well as cooling load demand prediction.

Documents disponibles

Format PDF

Pages : 399-409

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management.
  • Identifiant de la fiche : 30025412
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 98
  • Date d'édition : 02/2019
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2018.10.017

Liens


Voir d'autres articles du même numéro (51)
Voir la source