Document IIF

Détection de défaut et méthode de diagnostic d'un déshumidificateur de refroidissement à partir du modèle LS-SVM NARX.

Fault detection and diagnosis method for cooling dehumidifier based on LS-SVM NARX mode.

Auteurs : GAO Y., LIU S., LI F., et al.

Type d'article : Article, Article de la RIF

Résumé

Developing fault detection and diagnosis (FDD) for the cooling dehumidifier is very important for improving the equipment reliability and saving energy consumption. Due to the precise mathematic physical model for cooling dehumidifier FDD is difficult to build, a novel Nonlinear Autoregressive with Exogenous (NARX) method for the cooling dehumidifier FDD based on Least Squares Support Vector Machine (LS-SVM) is proposed. Firstly, the dehumidifier system is divided into two level models. Secondly, the parameters of the NARX model are identified by LS-SVM, and the parameters C and s of the LS-SVM are optimized by adaptive genetic algorithm (AGA) in order to improve the model building precision. Lastly, two faults in condenser and compressor component are diagnosed by the built models. The experiment result indicates this proposed method is effective for cooling dehumidifier FDD and the model generalization ability is favorable.

Documents disponibles

Format PDF

Pages : 69-81

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Fault detection and diagnosis method for cooling dehumidifier based on LS-SVM NARX mode.
  • Identifiant de la fiche : 30016562
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 61
  • Date d'édition : 01/2016

Liens


Voir d'autres articles du même numéro (13)
Voir la source