
Document IIF
Development of an automated compressor performance mapping using artificial neural network and multiple compressor technologies.
Développement d'une cartographie automatisée des performances des compresseurs en utilisant les technologies des réseaux neuronaux artificiels et des compresseurs multiples.
Auteurs : MA J., DING X., HORTON W. T., ZIVIANI D.
Type d'article : Article de la RIF
Résumé
In the last decades, several technological improvements to positive displacement compressors have been developed and introduced into market. During the process of implementing new compressor technologies, high-accuracy numerical models are essential to predict the performance at both component and system levels. ANSI/AHRI Standard 540 10-coefficient cubic polynomial model is still the industry-standard compressor mapping approach despite the well documented limitations. In order to generate accurate compressor maps by using the 10-coefficient cubic polynomial models, compressor manufacturers are required to obtain, in some cases, more than 20 compressor-calorimeter data points depending on the compressor type and operating envelope. This paper attempts to address the need for more generalized and versatile compressor mapping methodologies as well as to reduce the time-consuming and expensive compressor calorimeter testing. To this end, an automated compressor performance mapping approach based on artificial neural network (ANN) is proposed to identify the compressor operating envelope and map the performance of any positive displacement compressors for HVAC&R applications with minimum number of data points. In addition, the paper also aims at demonstrating the feasibility and reliability of the proposed automated compressor performance mapping approach for training the ANN models in comparison to conventional 10-coefficient cubic polynomial maps. Three different compressor types, i.e. reciprocating, scroll, and rotary rolling piston, have been considered as test cases.
Documents disponibles
Format PDF
Pages : 66-80
Disponible
Prix public
15 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Development of an automated compressor performance mapping using artificial neural network and multiple compressor technologies.
- Identifiant de la fiche : 30027840
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 120
- Date d'édition : 12/2020
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2020.08.001
- Disponible à la bibliothèque de l'IIF
Liens
Voir d'autres articles du même numéro (42)
Voir la source
Indexation
- Thèmes : Compresseurs
- Mots-clés : Compresseur; Réseau neuronal artificiel; Performance; Calorimètre; Essai
-
Neural-network-based polynomial correlation of ...
- Auteurs : ZHAO L. X., ZHANG C. L., GU B.
- Date : 03/2009
- Langues : Anglais
- Source : HVAC&R Research - vol. 15 - n. 2
Voir la fiche
-
An online compressor liquid floodback fault dia...
- Auteurs : ZHOU Z., WANG J., WEI W., XU C.
- Date : 03/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Formats : PDF
Voir la fiche
-
A neural network to predict the temperature dis...
- Auteurs : SILVA E., DINIZ M. C., DESCHAMPS C. J.
- Date : 14/07/2014
- Langues : Anglais
- Source : 2014 Purdue Conferences. 22nd International Compressor Engineering Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Multi-input multi-output (MIMO) artificial neur...
- Auteurs : ZIVIANI D., BAHMAN A., GROLL E.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
Data driven assessment of a small scale evapora...
- Auteurs : REICHERT H., DONNI R., SCHNEIDER P., ACUNHA I. C. Jr
- Date : 07/2020
- Langues :
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 115
- Formats : PDF
Voir la fiche