Document IIF
Développement d'une méthodologie d'analyse comparative de performances basée sur les données pour un grand nombre de conditionneurs d'air d'autobus.
Development of data-driven performance benchmarking methodology for a large number of bus air conditioners.
Résumé
Bus air conditioners (ACs) are responsible for providing a comfortable cabin environment for passengers. Identifying the bus ACs with degraded performance from a large number of city buses is a critical and challenging task in the development of smart cities. This study developed a data-driven benchmarking methodology to detect anomalous operations with degraded energy performance from a large number of bus ACs. For each target AC to be benchmarked, its similar operation data in other ACs, termed comparable peer samples, are first identified by a Long-Short-Term-Memory (LSTM) autoencoder-based similarity measurement method. The comparable peer samples are then used to develop a LSTM network-based reference model for predicting the power consumption of the target AC. A key energy performance indicator termed power consumption ratio (PCR) is defined for the target AC as the ratio of its measured power to the predicted power. Statistical analysis-based trend and change detection algorithms are designed to identify a trend or change of PCR over a few days for anomalous detection. To validate the benchmarking methodology, two fault experiments were conducted in field-operating bus ACs, and the results show encouraging potentials of the proposed methodology for health monitoring of a large number of ACs serving the city bus fleet.
Documents disponibles
Format PDF
Pages : 105-118
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Development of data-driven performance benchmarking methodology for a large number of bus air conditioners.
- Identifiant de la fiche : 30031537
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Date d'édition : 05/2023
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2022.12.027
Liens
Voir d'autres articles du même numéro (24)
Voir la source
-
IoT intelligent agent based cloud management sy...
- Auteurs : DU Z., CHEN S., ANDUV B., ZHU X., JIN X.
- Date : 02/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 146
- Formats : PDF
Voir la fiche
-
Energy Consumption Prediction and Analysis for ...
- Auteurs : MEDIOUNI H., EZZOUHRI A., CHAROUH Z., EL HAROURI K., EL HANI S., GHOGHO M.
- Date : 09/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 17
- Formats : PDF
Voir la fiche
-
Data and knowledge fusion-driven Bayesian netwo...
- Auteurs : WU D., YANG H., XU K., MENG X., YIN S., ZHU C., JIN X.
- Date : 05/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 161
- Formats : PDF
Voir la fiche
-
Developing learning-based models for occupant c...
- Auteurs : KIMBALL R., WEN J., O’NEILL Z., YANG T., LI Y.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 7th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
A robust fault diagnosis method for HVAC system...
- Auteurs : ZHU X., CHEN S., CHEN K., LIANG X., REN T., JIN X., DU Z.
- Date : 21/08/2023
- Langues : Anglais
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
Voir la fiche