Document IIF

Diagnostic des défaillances basé sur les données pour un système résidentiel à débit de frigorigène variable dans des environnements où les données sont déséquilibrées.

Data-driven fault diagnosis for residential variable refrigerant flow system on imbalanced data environments.

Auteurs : ZHOU Z., CHEN H., LI G., ZHONG H., ZHANG M., WU J.

Type d'article : Article de la RIF

Résumé

Data-driven approach has emerged as a popular research method for fault detection and diagnosis (FDD) of variable refrigerant flow system. However, one serious issue has been raised in recent studies, which shows that training classifiers with datasets which suffer of imbalanced class distributions can significantly influence the final classification accuracy. So, aiming at the imbalanced dataset environment problem of variable refrigerant flow (VRF) system based on data-driven fault detect and diagnosis, we conducted a study. First of all, through comparative research, it is concluded that the geometric mean accuracy of the fault detection in the VRF system has reduced an average of 42.49% due to the imbalanced data environment. Then we proposed a Principal Component Analysis-Synthetic Minority Oversampling Technique (PCA-SMOTE) method to save this problem, and verified the reliability and versatility of the proposed method with three types of modeling algorithms commonly used in VRF systems. The result shows that this method not only has obvious improvement effect, but also has strong versatility. In the end, we gradually reduce the number of minority from 50 to 10 to explore minimum fault data requirements of this method. The final result shows that this method can still ensure that common machine learning algorithms can effectively detect and diagnosis the VRF system fault when only 10 fault data are included.

Documents disponibles

Format PDF

Pages : 34-43

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Data-driven fault diagnosis for residential variable refrigerant flow system on imbalanced data environments.
  • Identifiant de la fiche : 30028258
  • Langues : Anglais
  • Sujet : Technologie
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 125
  • Date d'édition : 05/2021
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2021.01.009
  • Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.

Liens


Voir d'autres articles du même numéro (13)
Voir la source