Document IIF
Diagnostic des pannes d’un système de conditionnement d’air à débit de frigorigène variable basé sur un modèle de mélange gaussien amélioré avec une approche PCA (analyse du composant principal).
Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach.
Résumé
The timely fault diagnosis of HVAC systems is important for building energy saving, equipment maintenance and indoor comfort. The Gaussian mixture model method has rarely been studied in the fault diagnosis application of HVAC systems. Therefore, a novel fault diagnosis strategy is proposed based on the Gaussian mixture model (GMM) method for the variable refrigerant flow air-conditioning system. To reduce excessive input variables resulting in large model complexity and long running time, the principal component analysis approach (PCA) is used to perform data dimensionality reduction. Therefore, the fault diagnosis model combining the Gaussian mixture model and principal component analysis is established, which is evaluated using the four types of faults of the variable refrigerant flow system. These faults include refrigerant undercharge, refrigerant overcharge, outdoor unit fouling and four-way reversing valve faults. Experiments are carried out under three heating conditions. Results show that the PCA-GMM approach can effectively reduce the running time. Especially for the VVV type model, the running time is reduced from 176.78 s to 15.18 s. Meanwhile, established PCA-GMMs still have good fault diagnosis correct rates when the input data dimension is reduced. Especially, some PCA-GMMs have fault diagnosis correct rates of over 99% when the number of principal components exceeds 7.
Documents disponibles
Format PDF
Pages : 1-11
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach.
- Identifiant de la fiche : 30027691
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 118
- Date d'édition : 10/2020
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2020.06.009
Liens
Voir d'autres articles du même numéro (50)
Voir la source
-
Data-driven fault diagnosis for residential var...
- Auteurs : ZHOU Z., CHEN H., LI G., ZHONG H., ZHANG M., WU J.
- Date : 05/2021
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 125
- Formats : PDF
Voir la fiche
-
A comprehensive review: Fault detection, diagno...
- Auteurs : SINGH V., MATHUR J., BHATIA A.
- Date : 12/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 144
- Formats : PDF
Voir la fiche
-
Development of a remote refrigerant leakage det...
- Auteurs : KIMURA S., MORIWAKI M., YOSHIMI M., YAMADA S., HIKAWA T., KASAHARA S.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Model-based robust temperature control for VAV ...
- Auteurs : HUANG G., JORDAN F.
- Date : 06/2012
- Langues : Anglais
- Source : HVAC&R Research - vol. 18 - n. 3
Voir la fiche
-
Performance of variable refrigerant flow (VRF) ...
- Auteurs : COURTEY S.
- Date : 03/2014
- Langues : Anglais
- Source : REHVA Journal - vol. 51 - n. 2
Voir la fiche