Document IIF
Approche hybride de forêt neuronale profonde pour la détection des valeurs aberrantes et le diagnostic des défauts du système à débit de frigorigène variable.
A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system.
Résumé
This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field.
Documents disponibles
Format PDF
Pages : 104-118
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system.
- Identifiant de la fiche : 30027847
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 120
- Date d'édition : 12/2020
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2020.08.014
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres articles du même numéro (42)
Voir la source
-
Refrigerant charge fault diagnosis in the VRF s...
- Auteurs : SHI S., LI G., CHEN H., et al.
- Date : 05/02/2017
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 112
Voir la fiche
-
An online compressor liquid floodback fault dia...
- Auteurs : ZHOU Z., WANG J., WEI W., XU C.
- Date : 03/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Generalized correlation of refrigerant mass flo...
- Auteurs : KIM H. J.
- Date : 06/2005
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 28 - n. 4
- Formats : PDF
Voir la fiche
-
Fault detection and diagnosis of a refrigeratio...
- Auteurs : LIANG Q., HAN H., CUI X., et al.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche