Évaluation et optimisation de la performance thermoélectrique d'un générateur thermoélectrique annulaire concentrique selon différentes méthodes de refroidissement.
Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods.
Résumé
To ensure effective heat recovery of thermoelectric generators, a cooling system is necessary to maintain the working temperature difference of the thermoelectric couples, which decreases continuously due to thermal diffusion. In order to evaluate and improve the thermoelectric performance of a concentric annular thermoelectric generator under various cooling methods, a comprehensive numerical model of the thermo-fluid-electric multi-physics field for an annular thermoelectric generator with a concentric annular heat exchanger was developed using the finite-element method. The effects of four cooling methods and different exhaust parameters on the thermoelectric performance were investigated. The results show that, in comparison to the cocurrent cooling pattern, the countercurrent cooling pattern effectively reduces temperature distribution non-uniformity and hence increases the maximum output power; however, it requires more thermoelectric semiconductor materials. Furthermore, when using the cocurrent air-cooling method, high exhaust temperatures may result in lower output power; high exhaust mass flow rates result in high exhaust resistance and reduce system net power. The maximum net power output Pnet = 432.42 W was obtained using the countercurrent water-cooling, corresponding to an optimal thermoelectric semiconductor volume of 9.06 × 10−4 m3; when compared to cocurrent water-cooling, the maximum net power increased by 8.9%, but the optimal thermoelectric semiconductor volume increased by 21.4%.
Documents disponibles
Format PDF
Pages : 21 p.
Disponible
Gratuit
Détails
- Titre original : Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods.
- Identifiant de la fiche : 30029464
- Langues : Anglais
- Sujet : Technologie
- Source : Energies - vol. 15 - n. 6
- Éditeurs : MDPI
- Date d'édition : 03/2022
- DOI : http://dx.doi.org/https://doi.org/10.3390/en15062231
Liens
Voir d'autres articles du même numéro (15)
Voir la source
Indexation
-
Dynamic cooling of a semiconductor by a contact...
- Auteurs : LIPNICKI Z., KRÓL F.
- Date : 07/2005
- Langues : Anglais
- Source : International Journal of Heat and Mass Transfer - vol. 48 - n. 14
Voir la fiche
-
Laser cooling of a semiconductor by 40 Kelvin
- Auteurs : ZHANG J., LI D., CHEN R., et al.
- Date : 24/01/2013
- Langues : Anglais
- Source : Nature - vol. 493 - n. 7433
Voir la fiche
-
Influence of a Cooling System on Power MOSFETs’...
- Auteurs : GORECKI K., POSOBKIEWICZ K.
- Date : 04/2022
- Langues : Anglais
- Source : Energies - vol. 15 - n. 8
- Formats : PDF
Voir la fiche
-
INFLUENCE DES PROPRIETES DES MATERIAUX SEMI-CON...
- Auteurs : NAER V. A., JAKOVLEV Ju. A.
- Date : 1984
- Langues : Russe
- Source : Kholodilnaya Tekhnika - n. 3
Voir la fiche
-
Thermal management for a micro semiconductor la...
- Auteurs : ZHANG W., SHEN L., YANG Y., et al.
- Date : 05/11/2015
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 90
Voir la fiche