Résumé
Refrigerant leakage is a frequently-occurring fault that may have serious influence on the performance and environment, and is quite hard to be identified especially at an early stage. The traditional ways mainly concentrated on pattern recognition or classification, which is valid only when the leakage reaching serious level. This study proposes an SVR-LSTM model for real-time measurement and future prediction of refrigerant leakage with support vector regression (SVR) for leakage (soft) measurements based on four characteristic temperatures carefully screened via correlation analysis, and long short-term memory networks (LSTM) for leakage prediction based on soft measurement. Periodic optimisation is proposed for the prediction model using the constantly acquired running data. Leakage experiments on a 409.5-ton screw chiller with a rated charge of 330 kg were carried out and employed for verification. The results imply that the SVR soft measurement obtains an outstanding performance with R2 for training and testing reaching 95.80% and 99.98%, respectively, and is applied as the basis for subsequent prediction research. The RMSEs of the leakage prediction by the LSTM model established on 7000 s data are 0.323, and 3.3 kg, respectively, for 10 and 60 min, illustrating a difficult prediction for longer time. The optimised prediction model achieves higher performance with over 60% reduction in RMSE for 10-min prediction if 25.3% extra data is added. For longer-time prediction up to 40 min, the model with 20 min extra data performs best so far, demonstrating an effective prediction period of nearly 1/3 of the training duration.
Documents disponibles
Format PDF
Pages : 303-314
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Soft measurement and prediction of refrigerant leakage based on SVR-LSTM.
- Identifiant de la fiche : 30031941
- Langues : Anglais
- Sujet : Technologie
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 152
- Date d'édition : 08/2023
- DOI : http://dx.doi.org/10.1016/j.ijrefrig.2023.04.021
Liens
Voir d'autres articles du même numéro (34)
Voir la source
Indexation
- Thèmes : Confinement, réduction de la charge en frigorigène
- Mots-clés : Fuite; Frigorigène; Mesure; Modélisation; Prévision; Corrélation
-
A generalized analytic method for predicting re...
- Auteurs : HONG S. B., YOO J. W., KIM M. S.
- Date : 23/04/2017
- Langues : Anglais
- Source : 5th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants.
- Formats : PDF
Voir la fiche
-
Estimation of refrigerant charge inventory for ...
- Auteurs : PULINKUZHI V., THAKOR V., DATTA S. P., et al.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
A universal refrigerant charge fault detection ...
- Auteurs : LI Z., WELCH D., SHEN B., GLUESENKAMP K., BUTLER B., MORGAN S.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Mechanistic prediction model for leakage rates ...
- Auteurs : FRIEDEL L., WESTPHAL F.
- Date : 09/1990
- Langues : Anglais
- Source : Experimental Thermal and Fluid Science - vol. 3 - n. 5
Voir la fiche
-
Nouveau système de détection de fuites de frigo...
- Auteurs : GRABON M.
- Date : 09/2018
- Langues : Français
- Source : Revue générale du Froid & du Conditionnement d'air - n.1171
Voir la fiche