Document IIF

Evaporateur à plaque : transfert de chaleur et chute de pression.

Heat transfer and pressure drop in a plate-type evaporator.

Auteurs : WELLSANDT S., VAMLING L.

Type d'article : Article, Article de la RIF

Résumé

A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.

Documents disponibles

Format PDF

Pages : 180-188

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Heat transfer and pressure drop in a plate-type evaporator.
  • Identifiant de la fiche : 2003-1743
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 26 - n. 2
  • Date d'édition : 03/2003

Liens


Voir d'autres articles du même numéro (10)
Voir la source