Géométries de surface de transfert de chaleur côté air avancées grâce à la fabrication additive.

Advanced air-side heat transfer surface geometries enabled by additive manufacturing.

Numéro : pap. 2306

Auteurs : LEEDS C., WRIGHT C., NELLIS G.

Résumé

To maintain the performance of power plants while switching from water-cooling to air- (or dry-) cooling it is necessary to develop low-cost high-performance heat exchangers. Additive manufacturing using highly-filled polymers that provide increased conductivity and design freedom for manufacturing provide one path towards this goal. Advanced air-side heat transfer surface geometries enabled by additive manufacturing are being explored. One option is the axially-tapered (i.e., hourglass-shaped) pin fin array geometries considered in this work using Computational Fluid Dynamics (CFD). The axially-tapered pin fin uses less material than a conventional, provides higher heat transfer coefficient for most configurations (due to the small, on average, diameter) (Žukauskas, 1972), and provides a larger open area for air flow and thus a lower pressure drop. The fins can be manufactured such that they are hollow, allowing water flow into them and thus reducing the conduction resistance further. This paper uses ANSYS Workbench (ANSYS, 2016) to generate a range of pin fin geometries and meshes that are deployed as a large array of parallel CFD simulations in the Center for High Throughput Computing. The Engineering Equation Solver (EES) software (Klein, 2015) is used to develop correlations, which can then be implemented into heat exchanger optimization models. The predicted performance is compared to experimental data. The as-printed vs as-designed heat transfer surfaces are compared.

Documents disponibles

Format PDF

Pages : 10

Disponible

  • Prix public

    20 €

  • Prix membre*

    15 €

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Advanced air-side heat transfer surface geometries enabled by additive manufacturing.
  • Identifiant de la fiche : 30024488
  • Langues : Anglais
  • Source : 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Date d'édition : 09/07/2018

Liens


Voir d'autres communications du même compte rendu (252)
Voir le compte rendu de la conférence