Document IIF

Machine de renforcement du gradient de lumière (LightGBM) pour prédire les données et assister la conception de la stratégie de dégivrage des réfrigérateurs. Étude expérimentale et modélisation mathématique.

Light Gradient Boosting Machine (LightGBM) to forecasting data and assisting the defrosting strategy design of refrigerators.

Auteurs : HUANG H., CUI P., KE Q., TAN S., OOI K. T., LIU Z.

Type d'article : Article de la RIF

Résumé

This study proposes using the Light Gradient Boosting Machine (LightGBM) to improve the defrosting control strategy in frost-free refrigerators. By analyzing data and optimizing control parameters, the aim is to enhance defrosting performance and reduce energy consumption using the time–temperature difference (t–dT) approach. The research involves analyzing performance and reliability data for two control strategies (time–temperature (t–T) and t–dT), creating three feature sets (FS1, FS2, and FS3) based on correlation analysis, and employing LightGBM models to forecast datasets. The control parameter threshold (ΔTop,s) is optimized using the LightGBM-based data. The key findings indicate that the t–dT strategy with a fixed threshold (7.8 °C) outperforms the t–T method in efficiency at an ambient temperature of 38 °C. At 10 °C, the performance tests show no significant difference, but the t–T method performs better in reliability tests. The FS1-based data from the t–dT strategy in the reliability test at 10 °C are considered ideal input, and the LightGBM models generate FS2-based and FS3-based data for evaluation. The optimized t–dT defrosting strategy achieves favorable refrigeration conditions with minimal power consumption and optimal cooling capacity. The ideal ΔTop,s threshold, based on data for the idealized frosting condition, is determined to be 8.3 °C.

Documents disponibles

Format PDF

Pages : 182-196

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Light Gradient Boosting Machine (LightGBM) to forecasting data and assisting the defrosting strategy design of refrigerators.
  • Identifiant de la fiche : 30032256
  • Langues : Anglais
  • Sujet : Technologie
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 160
  • Date d'édition : 04/2024
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.01.025

Liens


Voir d'autres articles du même numéro (33)
Voir la source