Document IIF

Modélisation de la viscosité des frigorigènes purs et leurs mélanges liquides à l’aide de l’équation d’état de Patel-Teja.

Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel–Teja viscosity equation of state.

Auteurs : KHOSHARAY S., PIERANTOZZI M., DI NICOLA G.

Type d'article : Article, Article de la RIF

Résumé

A viscosity model based on the Patel–Teja equation of state has been applied to pure refrigerants and their liquid mixtures. 7490 data points, containing 6481 points for pure refrigerants and 1009 points for binary, ternary and quaternary mixtures, have been used. First, 29 pure refrigerants are selected and the pure-component parameters of the model are then fitted. Subsequently, seven binary mixtures have been used to regress the binary interaction parameters of the model. The resulting binary interaction parameters and pure-component parameters are then used to predict the viscosity of two ternary and one quaternary mixtures. The results show that deviations are generally low for all analyzed compounds and mixtures. (Overall AADs% are 7.44 for pure compounds, 3.37 for binary mixtures, 3.77 for ternary mixtures and 3.36 for a quaternary mixture). This model does not require the property of density, which is one of its main advantages.

Documents disponibles

Format PDF

Pages : 268-281

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel–Teja viscosity equation of state.
  • Identifiant de la fiche : 30022865
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 85
  • Date d'édition : 01/2018
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2017.10.004

Liens


Voir d'autres articles du même numéro (36)
Voir la source