Document IIF
Optimisation des paramètres de conception d'un réfrigérateur domestique en utilisant la mécanique numérique des fluides (CFD) et les réseaux neuronaux artificiels.
Optimisation of the design parameters of a domestic refrigerator using CFD and artificial neural networks.
Auteurs : AVCI H., KUMLUTAS D., ÖZER O., et al.
Type d'article : Article, Article de la RIF
Résumé
This paper reports the use of computational fluid dynamics (CFD) and artificial neural networks (ANN) for optimising and improving the performance of a static type domestic refrigerator. The effects of the hydrodynamic and thermal fields on the air flow inside of the refrigerator compartment were considered by exact modelling of the fan. The interior volume of air of the refrigerator was modelled using a CFD method, and analyses were performed. The numerical results were validated by comparing experimental results with the calculated interior design parameters. An optimisation study of the obtained design parameters was performed using a parametric method. The optimum design case was predicted by the ANN. The performance of the refrigerator improved by approximately 7.7% based on the amount of heat taken from the evaporator surface assuming thermal uniformity of the interior volume of air and the ISO 15502 standards. As a result, the annual energy consumption will decrease by 17.52 kWh.
Documents disponibles
Format PDF
Pages : 227-238
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Optimisation of the design parameters of a domestic refrigerator using CFD and artificial neural networks.
- Identifiant de la fiche : 30017773
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 67
- Date d'édition : 07/2016
Liens
Voir d'autres articles du même numéro (36)
Voir la source
Indexation
-
Investigation of design parameters of a domesti...
- Auteurs : KUMLUTAS D., KARADENIZ Z. H., AVCI H., et al.
- Date : 09/2012
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 35 - n. 6
- Formats : PDF
Voir la fiche
-
Accurate classification of frost thickness usin...
- Auteurs : ANDRADE-AMBRIZ Y. A., LEDESMA S., ALMANZA-OJEDA D. L., BELMAN-FLORES J. M.
- Date : 01/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 145
- Formats : PDF
Voir la fiche
-
Artificial neural network approach for irrevers...
- Auteurs : GILL J., SINGH J., OHUNAKIN O. S., et al.
- Date : 05/2018
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 89
- Formats : PDF
Voir la fiche
-
A sensor-less stroke detection technique for li...
- Auteurs : JIANG H., LIANG K., LI Z., ZHU Z., ZHI X., QIU L.
- Date : 06/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 114
- Formats : PDF
Voir la fiche
-
A novel intelligent control method for domestic...
- Auteurs : KAPICI E., KUTLUAY E., IZADI-ZAMANABADI R.
- Date : 04/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 136
- Formats : PDF
Voir la fiche