Document IIF

Optimisation des performances énergétiques d'un RRMP en utilisant les réseaux neuronaux.

The optimization of the energy performances of a PMRR by using neural networks.

Numéro : pap. 132

Auteurs : APREA C., GRECO A., MAIORINO A., et al.

Résumé

In recent years, a large number of experimental and numerical studies have highlighted the potential of the permanent magnetic rotary refrigerators (PMRR) than those reciprocating. For a PMMR, it is well known it is possible to obtain the desired performance by contemporary acting on two operational parameters: the mass flow rate and the cycle frequency. Consequently, with the aim to improve the energy performances of an actual PMRR, it is necessary to experience an innumerable amount of operating conditions regarding mass flow rate and cycle frequency. The present work introduces ANNTEO (artificial neural networks technique for
optimization), a technique based on artificial neural networks and able to reduce the number of experiments necessary to define an optimization map for an actual PMRR. The experimental setup and test procedure are here reported to demonstrate the technical soundness of ANNTEO.

Documents disponibles

Format PDF

Pages : 7 p.

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : The optimization of the energy performances of a PMRR by using neural networks.
  • Identifiant de la fiche : 30019380
  • Langues : Anglais
  • Source : 7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII). Proceedings: Turin, Italy, September 11-14, 2016.
  • Date d'édition : 11/09/2016
  • DOI : http://dx.doi.org/10.18462/iir.thermag.2016.0132

Liens


Voir d'autres communications du même compte rendu (71)
Voir le compte rendu de la conférence