Prédiction et analyse des performances des refroidisseurs évaporatifs indirects au point de rosée par la méthode des réseaux neuronaux artificiels.
Prediction and Analysis of Dew Point Indirect Evaporative Cooler Performance by Artificial Neural Network Method.
Résumé
The artificial neural network method has been widely applied to the performance prediction of fillers and evaporative coolers, but its application to the dew point indirect evaporative coolers is rare. To fill this research gap, a novel performance prediction model for dew point indirect evaporative cooler based on back propagation neural network was established using Matlab2018. Simulation based on the test date in the moderately humid region of Yulin City (Shaanxi Province, China) finds that: the root mean square error of the evaporation efficiency of the back propagation model is 3.1367, and the r2 is 0.9659, which is within the acceptable error range. However, the relative error of individual data (sample 7) is a little bit large, which is close to 10%. In order to improve the accuracy of the back propagation model, an optimized model based on particle swarm optimization was established. The relative error of the optimized model is generally smaller than that of the BP neural network especially for sample 7. It is concluded that the optimized artificial neural network is more suitable for solving the performance prediction problem of dew point indirect evaporative cooling units.
Documents disponibles
Format PDF
Pages : 14 p.
Disponible
Gratuit
Détails
- Titre original : Prediction and Analysis of Dew Point Indirect Evaporative Cooler Performance by Artificial Neural Network Method.
- Identifiant de la fiche : 30030180
- Langues : Anglais
- Sujet : Technologie
- Source : Energies - vol. 15 - n. 13
- Éditeurs : MDPI
- Date d'édition : 07/2022
- DOI : http://dx.doi.org/10.3390/en15134673
Liens
Voir d'autres articles du même numéro (15)
Voir la source
-
Performance analysis of a thermoelectric assist...
- Auteurs : GAO M., ZHOU Y., YU J., et al.
- Date : 24/08/2019
- Langues : Anglais
- Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
Voir la fiche
-
Machine learning model of regenerative evaporat...
- Auteurs : GUPTA A. K., KASHYAP S., SARKAR J.
- Date : 05/2022
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 137
- Formats : PDF
Voir la fiche
-
Physical and neural network models of a silica-...
- Auteurs : MORENO R., CEJUDO J. M., CARRILLO A.
- Date : 15/09/2001
- Langues : Anglais
- Source : CLIMA 2000. 7th REHVA World Congress, Naples 2001 [CD-ROM + Hard-copy abstracts].
Voir la fiche
-
Data driven assessment of a small scale evapora...
- Auteurs : REICHERT H., DONNI R., SCHNEIDER P., ACUNHA I. C. Jr
- Date : 07/2020
- Langues :
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 115
- Formats : PDF
Voir la fiche
-
Prediction models and control algorithms for pr...
- Auteurs : MOON J. W., YOON Y., JEON Y., et al.
- Date : 25/02/2017
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 113
Voir la fiche