Document IIF

Prévision du COP solaire optimal d'un système frigorifique à adsorption solaire fonctionnant à l'aide de couples actifs charbon actif/méthanol et fondé sur un réseau neuronal artificiel direct/inverse.

Optimal solar COP prediction of a solar-assisted adsorption refrigeration system working with activated carbon/methanol as working pairs using direct and inverse artificial neural network.

Auteurs : LAIDI M., HANINI S.

Type d'article : Article, Article de la RIF

Résumé

The aim of this work is to develop an ANN model to predict the solar COP (COPs) of a solar intermittent refrigeration system for ice production working with Activated carbon (AC)/methanol pair. A feedforward (FFBP) with one hidden layer, a Levenberg–Marquardt learning (LM) algorithm, hyperbolic tangent sigmoid transfer function and linear transfer function for the hidden and output layer respectively, were used. The best fitting training data was obtained with the architecture of (8 inputs, 8 hidden and 1 output neurons), Results of the ANN showed an excellent agreement R2 > 0.9985 between simulated and those obtained from literature with maximum root mean square error and RMSE = 0.0453%. A sensitivity analysis was also conducted using the inverse artificial neural network method to study the effect of all the inputs on the COPs. Results from the ANNi showed a good agreement in the case of the mass of activated (error less than 0.08%).

Documents disponibles

Format PDF

Pages : 247-257

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Optimal solar COP prediction of a solar-assisted adsorption refrigeration system working with activated carbon/methanol as working pairs using direct and inverse artificial neural network.
  • Identifiant de la fiche : 30006490
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 1
  • Date d'édition : 01/2013

Liens


Voir d'autres articles du même numéro (24)
Voir la source