Résumé
Power dissipation levels in mobile phones continue to increase due to gaming, higher power applications, and increased functionality associated with the internet. The current cooling methodologies of natural convection and radiation limit the power dissipation within a mobile phone to between 1-2 W depending on size. As power dissipation levels increase, products such as mobile phones will require active cooling to ensure that the devices operate within an acceptable temperature envelop from both user comfort and reliability perspectives. In this paper, we focus on the applied thermal engineering problem of an active cooling solution within a typical mobile phone architecture by implementing a custom centrifugal fan within the mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable phone heat dissipation and maximum phone surface temperature as this is the user constraint for a variety of simulated PCB architectures in the mobile phone. Perforated plates with varying porosity through different size orifices are used to simulate these architectures. The results show that the power level dissipated by a phone for a constant surface temperature may be increased by about 50-75% depending on pressure drop induced by the internal phone architecture. Hence for successful implementation and efficient utilization of active cooling will require chip layout to be considered at the design stage. [Reprinted with permission from Elsevier. Copyright, 2010].
Détails
- Titre original : Active cooling of a mobile phone handset.
- Identifiant de la fiche : 30003338
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 30 - n. 16
- Date d'édition : 11/2010
- DOI : http://dx.doi.org/10.1016/j.applthermaleng.2010.06.002
Liens
Voir d'autres articles du même numéro (5)
Voir la source
Indexation
- Thèmes : Autres applications industrielles
- Mots-clés : Électronique; Ventilateur; Refroidissement; Performance; Convection forcée
-
Forced convective cooling of a high-power solid...
- Auteurs : WANG J. R., MIN J. C., SONG Y. Z.
- Date : 04/2006
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 26 - n. 5-6
Voir la fiche
-
Relationship between supply flow rate of small ...
- Auteurs : FUKUE T., HIROSE K., HATAKEYAMA T., et al.
- Date : 28/02/2014
- Langues : Anglais
- Source : Electronics cooling
Voir la fiche
-
Effect of the high porosity sintered fiber on t...
- Auteurs : SANTIAGO-GALICIA E., KUMATORI K., OTOMO Y., ENOKI K.
- Date : 07/12/2020
- Langues : Anglais
- Source : 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2020). Proceedings. Kyoto, Japon, December 7-9th 2020.
- Formats : PDF
Voir la fiche
-
Numerical simulation of mixed convection air-co...
- Auteurs : BOUTINA L., BESSAÏH R.
- Date : 08/2011
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 31 - n. 11-12
Voir la fiche
-
Méthode simple pour évaluer la performance des ...
- Auteurs : TAKADA S.
- Date : 2001
- Langues : Japonais
- Source : Refrigeration - vol. 76 - n. 888
Voir la fiche