Régulation prévisionnelle par modèle distribué pour les systèmes de génie climatique d'immeubles : une étude de cas.

Distributed model predictive control for building HVAC systems: a case study.

Numéro : pap. 3611

Auteurs : PUTTA V., KIM D., CAI J., et al.

Résumé

Model predictive control (MPC) in building HVAC systems incorporates predictions of weather and occupancy to determine the optimal operating setpoints. However, application of MPC strategies to large buildings might not be feasible in real time due to the large number of degrees of freedom in the underlying optimization problem. Decomposing the problem into several smaller sub-problems to be solved in parallel is one way to circumvent the high computational requirements. Such an approach, termed Distributed MPC, requires certain approximations about the underlying sub-problems to converge to a consistent solution thus leading to a trade-off between computational load and optimality. In this paper, we present a simulation-based evaluation for a Distributed MPC formulation for a case study based on a medium-sized commercial building. Results indicate that distributed MPC can offer near-optimal control at a fraction of the computational time that centralized MPC requires while maintaining occupant comfort.

Documents disponibles

Format PDF

Pages : 8 p.

Disponible

  • Prix public

    20 €

  • Prix membre*

    15 €

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Distributed model predictive control for building HVAC systems: a case study.
  • Identifiant de la fiche : 30013806
  • Langues : Anglais
  • Sujet : Environnement
  • Source : 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
  • Date d'édition : 14/07/2014

Liens


Voir d'autres communications du même compte rendu (66)
Voir le compte rendu de la conférence