Document IIF

Un réseau neuronal pour prédire le point d'ébullition normal de frigorigènes purs en utilisant les groupes moléculaires et un indice topologique.

A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index.

Auteurs : DENG S., SU W., ZHAO L.

Type d'article : Article, Article de la RIF

Résumé

An artificial neuron network based on genetic algorithm is presented to predict the normal boiling point (Tb) of refrigerants from 16 molecular groups and a topological index. The 16 molecular groups used in this paper can cover most refrigerants or working fluids in refrigeration, heat pump and organic Rankine cycle; the chosen topological index is able to distinguish all the refrigerant isomers. A total of 334 data points from previous experiments are used to create this network. The calculated results, which are based on a developed numerical method, show a good agreement with experimental data; the average absolute deviations for training, validation and test sets are 1.83%, 1.77%, 2.13%, respectively. A performance comparison between the developed numerical model and the other two existing models, namely QSPR approach and UNIFAC group contribution method, shows that the proposed model can predict Tb of refrigerants in a better accord with experimental data.

Documents disponibles

Format PDF

Pages : 63-71

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index.
  • Identifiant de la fiche : 30016727
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 63
  • Date d'édition : 03/2016

Liens


Voir d'autres articles du même numéro (19)
Voir la source