Une comparaison entre terre rare et métaux de transition fonctionnant comme matériaux magnétiques dans un réfrigérateur à régénérateur magnétique actif (AMR) dans une plage de température ambiante.
A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range.
Auteurs : APREA C., GRECO A., MAIORINO A., et al.
Type d'article : Article
Résumé
This paper describes a two-dimensional (2D) multiphysics model of a packed bed regenerator made of magnetocaloric material. The regenerator operates as a refrigerant for a magnetic refrigerator operating at room temperature on the strength of an active magnetic regenerator (AMR) cycle. The model is able to simulate the thermofluidodynamic behavior of the magnetocaloric material and the magnetocaloric effect of the refrigerant. The model has been validated by means of experimental results. Different magnetic materials have been tested with the model as refrigerants: pure gadolinium, second order phase magnetic transition Pr0.45Sr0.35MnO3 and first order phase magnetic transition alloys Gd5(SixGe1-x)4, LaFe11.384Mn0.356Si1.26H1.52, LaFe11.05Co0.94Si1.10 and MnFeP0.45As0.55. The tests were performed with fixed fluid flow rate (5 l/min), AMR cycle frequency (1.25 Hz) and cold heat exchanger temperature (288 K) while the hot heat exchanger temperature was varied in the range 295–302 K. The results, generated for a magnetic induction which varies from 0 to 1.5 T, are presented in terms of temperature span, refrigeration power and coefficient of performance. From a global point of view (performances and cost), the most promising materials are LaFeSi compounds which are really cheaper than rare earth compounds and they give a performance sufficiently higher than gadolinium.
Détails
- Titre original : A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range.
- Identifiant de la fiche : 30017179
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 91
- Date d'édition : 05/12/2015
- DOI : http://dx.doi.org/10.1016/j.applthermaleng.2015.08.083
Liens
Voir d'autres articles du même numéro (57)
Voir la source
-
Large magnetocaloric effect near water boiling ...
- Auteurs : EICHENBERGER L., MAZET T., VERNIERE A.
- Date : 07/09/2014
- Langues : Anglais
- Source : 6th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VI). Proceedings: Victoria, Canada, September 7-10, 2014.
- Formats : PDF
Voir la fiche
-
Magnetocaloric effect in Gd(1-y)DyyAl2.
- Auteurs : ALHO B. P., RIBEIRO P. O., ALVARENGA T. S. T., et al.
- Date : 01/2014
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 37 - n. 1
- Formats : PDF
Voir la fiche
-
DRREAM: reducing rare earth use in magnetocalor...
- Auteurs : SANDEMAN K. G.
- Date : 07/09/2014
- Langues : Anglais
- Source : 6th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VI). Proceedings: Victoria, Canada, September 7-10, 2014.
- Formats : PDF
Voir la fiche
-
Experimental studies with an active magnetic re...
- Auteurs : ERIKSEN D., ENGELBRECHT K., BAHL C., et al.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche
-
Numerical analysis on the performance of a magn...
- Auteurs : ARITA S., OKAMURA T., NOGUCHI Y., et al.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche