Document IIF

Utilisation des modèles ANN et ANFIS pour prédire un compresseur à spirale à vitesse variable avec injection de vapeur.

Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection.

Auteurs : ZENDEHBOUDI A., LI X., WANG B.

Type d'article : Article, Article de la RIF

Résumé

The use of numerical models and experimental setups to evaluate various parameters of variable speed scroll compressors with vapor injection (VSSCV) seems to be time-consuming, expensive, and fairly complex for engineers; hence development of an intelligent predictive model that is quick, simple to use, robust, and accurate in this field of study is worthwhile and highly necessary for work. In this regard, the paper presents two intelligent modeling approaches using an Artificial Neural Network (ANN) and an Adaptive Neuro Fuzzy Inference System (ANFIS) for the first time to accurately calculate the suction, discharge and injection mass flow rates (View the MathML sourcem?SUC, View the MathML sourcem?DIS, and View the MathML sourcem?INJ), compressor electrical power (View the MathML sourceW?COMP), and refrigerant temperature at compressor discharge (TDIS) for a VSSCV. The comparison between the developed models via statistical criteria showed the higher precision of applying the ANFIS approach as a suitable model for the prediction of VSSCV parameters compared to the ANN one.

Documents disponibles

Format PDF

Pages : 473-485

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection.
  • Identifiant de la fiche : 30020139
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 74
  • Date d'édition : 02/2017

Liens


Voir d'autres articles du même numéro (56)
Voir la source