• Accueil
  • Publications

  • Machine learning based diagnosis strategy for r...

Document IIF

Machine learning based diagnosis strategy for refrigerant charge amount malfunction of variable refrigerant flow system.

Stratégie de diagnostic basée sur l’apprentissage automatique en cas de dysfonctionnement d’un système à débit de frigorigène variable dû à la quantité de charge de frigorigène

Auteurs : LI Z., SHI S., CHEN H., et al.

Type d'article : Article, Article de la RIF

Résumé

Malfunctions would occur in a variable refrigerant flow (VRF) system after years of operation or inappropriate maintenance, thus causing unnecessary energy waste and even occupant discomfort. This study presents a machine learning based malfunction diagnosis strategy that combines the recursive feature elimination algorithm (RFE) and the classification algorithms for the typical malfunctions of VRF system. RFE based on Random Forest (RF) model firstly serves as the feature selection process to evaluate vari- ables importance, thus acquiring the key variables related to malfunction. Then five kinds of machine learning classification models are trained using the chosen key variables to diagnosis refrigerant leak- age malfunction. By comparison, the AdaBoost.M1 (ABM) model shows the most desirable performance on the all nine malfunction severity levels. The results show that the RFR-RF based feature selection method can select the most six critical variables and the ABM model established based on the six vari- ables achieves admirable diagnostic accuracy and AUC value for faults corresponding to nine severity levels.

Documents disponibles

Format PDF

Pages : 95-105

Disponible

  • Prix public

    15 €

  • Prix membre*

    8 €

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Machine learning based diagnosis strategy for refrigerant charge amount malfunction of variable refrigerant flow system.
  • Identifiant de la fiche : 30027291
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 110
  • Date d'édition : 02/2020
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2019.10.026

Liens


Voir d'autres articles du même numéro (29)
Voir la source