Summary
Malfunctions would occur in a variable refrigerant flow (VRF) system after years of operation or inappropriate maintenance, thus causing unnecessary energy waste and even occupant discomfort. This study presents a machine learning based malfunction diagnosis strategy that combines the recursive feature elimination algorithm (RFE) and the classification algorithms for the typical malfunctions of VRF system. RFE based on Random Forest (RF) model firstly serves as the feature selection process to evaluate vari- ables importance, thus acquiring the key variables related to malfunction. Then five kinds of machine learning classification models are trained using the chosen key variables to diagnosis refrigerant leak- age malfunction. By comparison, the AdaBoost.M1 (ABM) model shows the most desirable performance on the all nine malfunction severity levels. The results show that the RFR-RF based feature selection method can select the most six critical variables and the ABM model established based on the six vari- ables achieves admirable diagnostic accuracy and AUC value for faults corresponding to nine severity levels.
Available documents
Format PDF
Pages: 95-105
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Machine learning based diagnosis strategy for refrigerant charge amount malfunction of variable refrigerant flow system.
- Record ID : 30027291
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 110
- Publication date: 2020/02
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2019.10.026
Links
See other articles in this issue (29)
See the source
Indexing
-
Refrigerant charge fault diagnosis in the VRF s...
- Author(s) : SHI S., LI G., CHEN H., et al.
- Date : 2017/02/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 112
View record
-
Reductie van koudemiddelinhoud in koelsystemen.
- Author(s) : SCHRÖER J.
- Date : 2010/11
- Languages : Dutch
- Source: Koude & Luchtbehandeling - vol. 103
View record
-
Visie en technische ontwikkelingen rondom koude...
- Author(s) : WISSINK E. B.
- Date : 2010/10
- Languages : Dutch
- Source: Koude & Luchtbehandeling - vol. 103
View record
-
Détection et diagnostic automatique de panne (F...
- Author(s) : TERRIER M. F., TREMEAC B.
- Date : 2013/06
- Languages : French
- Source: Revue générale du Froid & du Conditionnement d'air - vol. 103 - n. 1134
View record
-
Reducción de la carga refrigerante en los siste...
- Author(s) : IIF-IIR, CORBERÁN J. M., et al.
- Date : 2014/06
- Languages : Spanish
- Source: Frío Calor Aire acondicionado - vol. 42 - n. 470
- Formats : PDF
View record