Diagnostic des anomalies de la charge en frigorigène d’un système à débit de frigorigène variable utilisant un réseau neuronal artificiel Bayésien associé à un filtre ReliefF.
Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter.
Résumé
A proper refrigerant charge amount (RCA) is critical for a variable refrigerant flow (VRF) system since RCA may affect the operational performance. However, there were few studies of RCA fault for the VRF system in the open literature. Therefore VRF systems are calling for a fault diagnosis strategy. This paper develops a highly efficient fault diagnosis model (FDM), which employs the ReliefF algorithm for feature ranking (FR) and applies the neural network for fault diagnosis. Firstly, the artificial neural network (ANN) model is built on the N-best features data subset and optimized by the Bayesian regularization algorithm. Secondly, the model is verified by testing data subset, the correct diagnosis rates (CDR) using the N-best features data subset can be obtained. The optimal FDM is selected in consideration of CDR and the computational efficiency. Finally, optimal FDM is further optimized by selecting the best hidden neurons. The results show that the CDR of the FDM based on 6-best features is sufficiently high in comparison to the CDR achieved when 22 features are used, while the training time decreases by 98.8%.
Détails
- Titre original : Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter.
- Identifiant de la fiche : 30020789
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 112
- Date d'édition : 05/02/2017
- DOI : http://dx.doi.org/10.1016/j.applthermaleng.2016.10.043
Liens
Voir d'autres articles du même numéro (39)
Voir la source
-
A hybrid deep forest approach for outlier detec...
- Auteurs : ZENG Y., CHEN H., XU C., CHENG Y., GONG Q.
- Date : 12/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 120
- Formats : PDF
Voir la fiche
-
Generalized correlation of refrigerant mass flo...
- Auteurs : KIM H. J.
- Date : 06/2005
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 28 - n. 4
- Formats : PDF
Voir la fiche
-
An online compressor liquid floodback fault dia...
- Auteurs : ZHOU Z., WANG J., WEI W., XU C.
- Date : 03/2020
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Formats : PDF
Voir la fiche
-
Modified neural network correlation of refriger...
- Auteurs : YANG L., ZHANG C. L.
- Date : 09/2009
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 32 - n. 6
- Formats : PDF
Voir la fiche
-
Development of dynamic modeling framework using...
- Auteurs : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche