Document IIF

Amélioration de l'efficacité des grands systèmes de réfrigération de magasins froids à travers l'identification automatique des pannes et l'optimisation intelligente de l'énergie.

Enhancing efficiency of large cold store refrigeration systems through automated fault identification and intelligent energy optimization.

Auteurs : ZHU Z., LIU X., WANG X., LIU B.

Type d'article : Article de la RIF

Résumé

Refrigeration systems in large cold stores frequently operate suboptimally due to component faults, leading to significant energy wastage and high carbon emissions. This study introduces a novel procedure that leverages data mining to automatically analyze and identify faults, thereby enhancing the intelligence of refrigeration equipment. The research focused on abnormal suction temperatures of compressors during the defrosting of air coolers in a large cold store. Through theoretical analysis and key data acquisition, the root cause of defrosting issues was traced to the abnormal operation of gas-powered suction stop valves, causing leakage of high-pressure hot gas. Clustering methods, Self-Organizing Maps (SOM), were utilized to classify system states and achieved high accuracy rates of 88.6 % to 93.8 % for the three fault modes during the defrosting process, respectively. The resolution of defrosting faults resulted in an energy consumption reduction of up to 18.3 %, aligning with global sustainability initiatives. The study also evaluated the carbon emission reduction, providing a comprehensive approach to improving the efficiency and environmental impact of cold store operations.

Documents disponibles

Format PDF

Pages : 411-422

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Enhancing efficiency of large cold store refrigeration systems through automated fault identification and intelligent energy optimization.
  • Identifiant de la fiche : 30032870
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
  • Date d'édition : 12/2024
  • DOI : http://dx.doi.org/10.1016/j.ijrefrig.2024.09.002

Liens


Voir d'autres articles du même numéro (63)
Voir la source