Document IIF

Application d'une méthode de prévision de la formation de givre sur une surface froide.

Application of support vector machine for predicting the frost growth on cold surface.

Auteurs : REN N., GU B.


Accurate prediction of frost growth is rather difficult because of its typically strong nonlinear and time-dependent process, and the measured experimental data usually contain many noisy signals. To solve this problem, a novel machine learning method-support vector machine (SVM) based on structure risk minimization principle is introduced to develop models for the prediction, during the frost growth, of frost thickness, total heat flux and frost mass concentration. The predicted results are found to be in good agreement with the measured experimental data, with mean relative error less than 0.62% for the total heat flux, 2.42% for the frost mass concentration, and 5.94% for the frost thickness. Compared with the multivariate nonlinear regression model, the SVM models show better capability in solving nonlinear, time-dependent and noise-signal-interfered problem. This demonstrates that the SVM technique can be well used in predicting the frost growth characteristics, and accordingly, help optimize air-to-refrigerant system.

Documents disponibles

Format PDF

Pages : ICR07-B2-185


  • Prix public

    20 €

  • Prix membre*


* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)


  • Titre original : Application of support vector machine for predicting the frost growth on cold surface.
  • Identifiant de la fiche : 2008-0220
  • Langues : Anglais
  • Source : ICR 2007. Refrigeration Creates the Future. Proceedings of the 22nd IIR International Congress of Refrigeration.
  • Date d'édition : 21/08/2007


Voir d'autres communications du même compte rendu (839)
Voir le compte rendu de la conférence