Résumé
The gray-box modeling approach (i.e., semi-physical thermal network model) has been widely used for prediction applications for buildings such as a model predictive control (MPC). However, applying the modeling approach for practical buildings is still challenging due to unmeasured disturbances such as occupants, lighting, appliances, and in/exfiltration loads. To overcome this problem, several system identification approaches have been proposed by considering the dynamics of unmeasured disturbance. However, the performance of long-term (e.g., one day) zone temperature or load predictions could still be very poor, and this is an important research topic for enabling grid-interactive buildings. In this study, we propose a hybrid modeling approach to improve long-term temperature or load predictions. Several system identification approaches for gray-box models are compared using simulations to understand the limitations. A neural network model that accounts for unmeasured disturbance is developed by considering the limitation of the graybox model and is combined with the gray-box model. This hybrid model approach shows 0.24°C root mean squared error (RMSE) for 1-day ahead temperature prediction on average, while the conventional gray-box model shows 1.1°C RMSE on average.
Documents disponibles
Format PDF
Pages : 10 p.
Disponible
Gratuit
Détails
- Titre original : Hybrid modeling approach for better identification of building thermal network model and improved prediction.
- Identifiant de la fiche : 30030244
- Langues : Anglais
- Source : 2022 Purdue Conferences. 7th International High Performance Buildings Conference at Purdue.
- Date d'édition : 2022
- Document disponible en consultation à la bibliothèque du siège de l'IIF uniquement.
Liens
Voir d'autres communications du même compte rendu (39)
Voir le compte rendu de la conférence
-
Concept and calculation method of local cooling...
- Auteurs : LIANG C., SHAO X., LI X.
- Date : 16/08/2015
- Langues : Anglais
- Source : Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
Voir la fiche
-
Cooling season full and part load performance e...
- Auteurs : IM P., MALHOTRA M., MUNK J., et al.
- Date : 11/07/2016
- Langues : Anglais
- Source : 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Local sensing and personalized thermal comfort:...
- Auteurs : ZHANG H., LIU X., LEE S., TZEMPELIKOS A.
- Date : 24/05/2021
- Langues : Anglais
- Source : 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Optimal load shifting for multiple ON/OFF air c...
- Auteurs : KIM D., BRAUN J. E.
- Date : 2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 7th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche
-
An agent-based control implementation for the o...
- Auteurs : HOU X., XIAO Y., JOE J., et al.
- Date : 09/07/2018
- Langues : Anglais
- Source : 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
Voir la fiche