Document IIF
Comparaison entre différentes méthodes de prévision du niveau de charge en frigorigène dans une pompe à chaleur eau/eau.
Comparison between different refrigerant charge level predictive methods in a water-to-water heat pump.
Numéro : 0098
Auteurs : D'IGNAZI C., BONGIORNO C., MOLINAROLI L.
Résumé
Heat pumps performance is negatively impacted by non-optimal refrigerant charge levels, often resulting from improper installation or leakage. This study compares different non-invasive methods to predict the charge levels in a R513A water-to-water heat pump. Theoretical approaches available in the literature fail to provide accurate results when the heat pump operating parameters are affected by the presence of a liquid receiver and two-phase refrigerant at the condenser outlet. To overcome this limitation, two empirical approaches using artificial neural networks (ANN) are developed. The first ANN, which uses the same inputs as the best-performing model in the literature, shows slight improvements but fails below 95% of the nominal charge. The second ANN utilizes inputs from commonly found heat pump sensors. This approach achieves 1.0% uncertainty in determining charge levels between the nominal charge and the level where subcooling collapses to zero. Beyond this threshold, the approach remains capable of detecting charge reductions with a 9.1% uncertainty of the nominal charge.
Documents disponibles
Format PDF
Pages : 12
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Comparison between different refrigerant charge level predictive methods in a water-to-water heat pump.
- Identifiant de la fiche : 30031374
- Langues : Anglais
- Sujet : Technologie
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Date d'édition : 21/08/2023
- DOI : http://dx.doi.org/10.18462/iir.icr.2023.0098
Liens
Voir d'autres communications du même compte rendu (491)
Voir le compte rendu de la conférence
-
Deep learning-based refrigerant charge fault de...
- Auteurs : EOM Y. H., HONG S. B., YOO J. W., KIM M. S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche
-
An experimental data-driven charge model for ro...
- Auteurs : LEE A. J., BACH C. K., BRADSHAW C. R.
- Date : 02/2024
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 158
- Formats : PDF
Voir la fiche
-
Refrigerant charge fault diagnosis in the VRF s...
- Auteurs : SHI S., LI G., CHEN H., et al.
- Date : 05/02/2017
- Langues : Anglais
- Source : Applied Thermal Engineering - vol. 112
Voir la fiche
-
A theoretical refrigerant charge prediction equ...
- Auteurs : HONG S. B., YOO J. W., KIM M. S.
- Date : 08/2019
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 104
- Formats : PDF
Voir la fiche
-
Development of a dynamic model of a heat pump s...
- Auteurs : YUN Y., HAN D., CHANG Y. S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche