Conception de tests d'usure accélérée pour des joints d'installations frigorifiques sans flamme.

Design of accelerated fatigue tests for flame free refrigeration fittings.

Numéro : pap. 2564

Auteurs : WILSON M., BOWERS C.

Résumé

Refrigerant leakage from failed braze joints is a multi-billion dollar problem for the global HVAC&R industry. Leaks are typically caused due to mechanical fatigue from extreme pressure cycling, temperature cycling including exposure to freeze/thaw cycles, or vibrational wear induced from rotating electrical machinery. Three tests to accelerate mechanical fatigue were devised to simulate real world extreme conditions to determine possible failure modes of refrigerant components and joining technologies. The first test is a combined thermal/pressure shock test designed to simulate abrupt temperature and pressure changes due to start/stop cycles and frost/defrost mode changes. Field failures of brazed joints have been detected due to water being trapped in tight spaces and expanding during freezing, causing high stress on brazed joints. The second test is a vibration test, designed to simulate vibrational loads induced from rotating components in the system. The third and final series of testing is a freeze/thaw cycling profile which simulates ice buildup and defrost observed during heat pump operation. The test article is a flame-free tube fitting designed to work with refrigerants. Six different fitting sizes designed to connect tubes between 6.35 mm and 28.5 mm were subjected to the three tests described above.

Documents disponibles

Format PDF

Pages : 9 p.

Disponible

  • Prix public

    20 €

  • Prix membre*

    15 €

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Design of accelerated fatigue tests for flame free refrigeration fittings.
  • Identifiant de la fiche : 30013527
  • Langues : Anglais
  • Source : 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Date d'édition : 14/07/2014

Liens


Voir d'autres communications du même compte rendu (203)
Voir le compte rendu de la conférence