Document IIF

Diagnostic des défauts d’un refroidisseur avec la technique des données déséquilibrées.

Chiller fault diagnosis with the technology of imbalanced data.

Numéro : pap. n. 1057

Auteurs : FAN Y., HAN H., CUI X., et al.

Résumé

Data driven diagnostic model for refrigeration systems is often used exclusively to a dedicated object. When it comes to a different type of chiller, a new model must be trained with large among of normal and faulty data, which is both time-consuming and heavily data-depending, and accordingly, curbs its application. In this study, the technology for the tackling of imbalanced data was introduced to probe the possibility of extrapolating an old model trained for a centrifugal chiller to a new one that can diagnose the faults of a screw chiller, by just using small amount of new data. Synthetic Minority Oversampling Technique (SMOTE) is used to oversample the fault sample set with an unbalance ratio of 5% and support vector machine (SVM) is employed for fault diagnosis. By investigating oversampling ratios between 100% and 400%, it was found that the ratio of 100% was the best and the diagnostic accuracy reached 96.70% for the four types of faults of the screw chiller.

Documents disponibles

Format PDF

Pages : 8

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Chiller fault diagnosis with the technology of imbalanced data.
  • Identifiant de la fiche : 30026692
  • Langues : Anglais
  • Source : Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
  • Date d'édition : 24/08/2019
  • DOI : http://dx.doi.org/10.18462/iir.icr.2019.1057
  • Notes :

    Keynote


Liens


Voir d'autres communications du même compte rendu (632)
Voir le compte rendu de la conférence